Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007368> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4328007368 endingPage "5" @default.
- W4328007368 startingPage "1" @default.
- W4328007368 abstract "The existing Transformer-based RGBT tracker mainly focus on the enhancement of features extracted by Convolutional Neural Network (CNN). The potential of Transformer in representation learning remains under-explored. In this paper, we propose a Convolution-Transformer network with joint multimodal feature learning, in which both representation learning and feature fusion leverage Transformer. Specifically, we use the multi-branch Convolution-Transformer feature extraction network to process the extraction task of local modality-independent features and global modality-shared features respectively. Several simplified Transformer encoder layers form the Transformer backbone network, which is more suitable for the real-time object tracking. Besides, we found that inter-modality correlation is an important factor for modality interactions and mutual exploitation. Therefore, we propose a Joint Multimodal Feature Learning (JMFL) module, which uses cross-attention to capture the dependencies of cross-modal and enhance multimodal fusion by bidirectional guidance of multimodal information. The proposed method is fully experimented on two large benchmark datasets and compared with some current well-performing methods. The experimental results show that the proposed method performs well in terms of tracking accuracy and speed." @default.
- W4328007368 created "2023-03-22" @default.
- W4328007368 creator A5008995165 @default.
- W4328007368 creator A5023822600 @default.
- W4328007368 creator A5025079159 @default.
- W4328007368 creator A5028235866 @default.
- W4328007368 creator A5049078993 @default.
- W4328007368 date "2023-01-01" @default.
- W4328007368 modified "2023-10-16" @default.
- W4328007368 title "Visible and Infrared Object Tracking via Convolution-Transformer Network With Joint Multimodal Feature Learning" @default.
- W4328007368 cites W1857884451 @default.
- W4328007368 cites W2154889144 @default.
- W4328007368 cites W2470394683 @default.
- W4328007368 cites W2527415613 @default.
- W4328007368 cites W2887522866 @default.
- W4328007368 cites W2963905288 @default.
- W4328007368 cites W2970995493 @default.
- W4328007368 cites W2996575194 @default.
- W4328007368 cites W2997131652 @default.
- W4328007368 cites W3012425959 @default.
- W4328007368 cites W3035020406 @default.
- W4328007368 cites W3099681648 @default.
- W4328007368 cites W3130705840 @default.
- W4328007368 cites W3132864630 @default.
- W4328007368 cites W3163754270 @default.
- W4328007368 cites W3166016280 @default.
- W4328007368 cites W3171106688 @default.
- W4328007368 cites W3183904268 @default.
- W4328007368 cites W3214116948 @default.
- W4328007368 cites W4214542306 @default.
- W4328007368 cites W4283808043 @default.
- W4328007368 cites W4285145446 @default.
- W4328007368 doi "https://doi.org/10.1109/lgrs.2023.3259583" @default.
- W4328007368 hasPublicationYear "2023" @default.
- W4328007368 type Work @default.
- W4328007368 citedByCount "0" @default.
- W4328007368 crossrefType "journal-article" @default.
- W4328007368 hasAuthorship W4328007368A5008995165 @default.
- W4328007368 hasAuthorship W4328007368A5023822600 @default.
- W4328007368 hasAuthorship W4328007368A5025079159 @default.
- W4328007368 hasAuthorship W4328007368A5028235866 @default.
- W4328007368 hasAuthorship W4328007368A5049078993 @default.
- W4328007368 hasConcept C108583219 @default.
- W4328007368 hasConcept C119599485 @default.
- W4328007368 hasConcept C127413603 @default.
- W4328007368 hasConcept C153180895 @default.
- W4328007368 hasConcept C154945302 @default.
- W4328007368 hasConcept C165801399 @default.
- W4328007368 hasConcept C31972630 @default.
- W4328007368 hasConcept C41008148 @default.
- W4328007368 hasConcept C52622490 @default.
- W4328007368 hasConcept C59404180 @default.
- W4328007368 hasConcept C66322947 @default.
- W4328007368 hasConcept C81363708 @default.
- W4328007368 hasConceptScore W4328007368C108583219 @default.
- W4328007368 hasConceptScore W4328007368C119599485 @default.
- W4328007368 hasConceptScore W4328007368C127413603 @default.
- W4328007368 hasConceptScore W4328007368C153180895 @default.
- W4328007368 hasConceptScore W4328007368C154945302 @default.
- W4328007368 hasConceptScore W4328007368C165801399 @default.
- W4328007368 hasConceptScore W4328007368C31972630 @default.
- W4328007368 hasConceptScore W4328007368C41008148 @default.
- W4328007368 hasConceptScore W4328007368C52622490 @default.
- W4328007368 hasConceptScore W4328007368C59404180 @default.
- W4328007368 hasConceptScore W4328007368C66322947 @default.
- W4328007368 hasConceptScore W4328007368C81363708 @default.
- W4328007368 hasFunder F4320321001 @default.
- W4328007368 hasFunder F4320322769 @default.
- W4328007368 hasLocation W43280073681 @default.
- W4328007368 hasOpenAccess W4328007368 @default.
- W4328007368 hasPrimaryLocation W43280073681 @default.
- W4328007368 hasRelatedWork W2059299633 @default.
- W4328007368 hasRelatedWork W2279398222 @default.
- W4328007368 hasRelatedWork W2732542196 @default.
- W4328007368 hasRelatedWork W2738221750 @default.
- W4328007368 hasRelatedWork W2773120646 @default.
- W4328007368 hasRelatedWork W3011074480 @default.
- W4328007368 hasRelatedWork W3156786002 @default.
- W4328007368 hasRelatedWork W4299822940 @default.
- W4328007368 hasRelatedWork W4366492315 @default.
- W4328007368 hasRelatedWork W564581980 @default.
- W4328007368 hasVolume "20" @default.
- W4328007368 isParatext "false" @default.
- W4328007368 isRetracted "false" @default.
- W4328007368 workType "article" @default.