Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007666> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4328007666 endingPage "32318" @default.
- W4328007666 startingPage "32308" @default.
- W4328007666 abstract "In deep learning based stock trading strategy models, most of the research just use simple convolutional neural networks (CNN) to process stock data. But task-specific neural network structures have been proposed extensively, and their effectiveness has been demonstrated in computer vision (CV) and natural language processing (NLP) tasks. In this paper, we proposed a multi-scale convolutional neural feature extraction network (MS-CNN) for stock data, which can better extract stock trend features and thus make better decisions. The network structure inspired by the human stock trading model: in human behavior, we do not only look at a single set of stock data, but rather combine all the stock data, such as opening, closing, and trading volume, to make a comprehensive judgment. And humans will consider the current stock trend on different time scales, such as 3-Day Line and 5-Day Line. This is consistent with the two-dimensional convolution kernels commonly used in CV tasks, so we used convolution kernels of 3×3 and 5×5 in the network with two-dimensional convolution size and constructed a novel network structure for stock data. With double deep Q networks (DDQN) algorithm, we get the best performance for our network. The experimental results show that we can obtain high yield on the datasets of Dow Jones (DJI), AAPLE (AAPL), and General Electric (GE)." @default.
- W4328007666 created "2023-03-22" @default.
- W4328007666 creator A5012035875 @default.
- W4328007666 creator A5015270146 @default.
- W4328007666 creator A5044295393 @default.
- W4328007666 creator A5082267036 @default.
- W4328007666 creator A5090612924 @default.
- W4328007666 date "2023-01-01" @default.
- W4328007666 modified "2023-10-16" @default.
- W4328007666 title "A Novel Convolutional Neural Networks for Stock Trading Based on DDQN Algorithm" @default.
- W4328007666 cites W1901129140 @default.
- W4328007666 cites W2036750255 @default.
- W4328007666 cites W2041367235 @default.
- W4328007666 cites W2093630205 @default.
- W4328007666 cites W2114146953 @default.
- W4328007666 cites W2169015875 @default.
- W4328007666 cites W2171916252 @default.
- W4328007666 cites W2344786740 @default.
- W4328007666 cites W2618530766 @default.
- W4328007666 cites W2788530562 @default.
- W4328007666 cites W2966021938 @default.
- W4328007666 cites W2989765054 @default.
- W4328007666 cites W2997395940 @default.
- W4328007666 cites W2997497843 @default.
- W4328007666 cites W3011387630 @default.
- W4328007666 cites W3012223895 @default.
- W4328007666 cites W3012333258 @default.
- W4328007666 cites W3016720366 @default.
- W4328007666 cites W3035275162 @default.
- W4328007666 cites W3035574064 @default.
- W4328007666 cites W3089019288 @default.
- W4328007666 cites W3126577088 @default.
- W4328007666 cites W3135178882 @default.
- W4328007666 cites W3138503612 @default.
- W4328007666 cites W3186792524 @default.
- W4328007666 cites W3205817586 @default.
- W4328007666 cites W4210954770 @default.
- W4328007666 cites W4214771350 @default.
- W4328007666 cites W4225724460 @default.
- W4328007666 cites W4233664376 @default.
- W4328007666 cites W4243641017 @default.
- W4328007666 cites W4285606719 @default.
- W4328007666 cites W4289639877 @default.
- W4328007666 cites W4314446242 @default.
- W4328007666 cites W4318828584 @default.
- W4328007666 doi "https://doi.org/10.1109/access.2023.3259424" @default.
- W4328007666 hasPublicationYear "2023" @default.
- W4328007666 type Work @default.
- W4328007666 citedByCount "2" @default.
- W4328007666 countsByYear W43280076662023 @default.
- W4328007666 crossrefType "journal-article" @default.
- W4328007666 hasAuthorship W4328007666A5012035875 @default.
- W4328007666 hasAuthorship W4328007666A5015270146 @default.
- W4328007666 hasAuthorship W4328007666A5044295393 @default.
- W4328007666 hasAuthorship W4328007666A5082267036 @default.
- W4328007666 hasAuthorship W4328007666A5090612924 @default.
- W4328007666 hasBestOaLocation W43280076661 @default.
- W4328007666 hasConcept C108583219 @default.
- W4328007666 hasConcept C11413529 @default.
- W4328007666 hasConcept C119857082 @default.
- W4328007666 hasConcept C127413603 @default.
- W4328007666 hasConcept C154945302 @default.
- W4328007666 hasConcept C204036174 @default.
- W4328007666 hasConcept C41008148 @default.
- W4328007666 hasConcept C50644808 @default.
- W4328007666 hasConcept C78519656 @default.
- W4328007666 hasConcept C81363708 @default.
- W4328007666 hasConceptScore W4328007666C108583219 @default.
- W4328007666 hasConceptScore W4328007666C11413529 @default.
- W4328007666 hasConceptScore W4328007666C119857082 @default.
- W4328007666 hasConceptScore W4328007666C127413603 @default.
- W4328007666 hasConceptScore W4328007666C154945302 @default.
- W4328007666 hasConceptScore W4328007666C204036174 @default.
- W4328007666 hasConceptScore W4328007666C41008148 @default.
- W4328007666 hasConceptScore W4328007666C50644808 @default.
- W4328007666 hasConceptScore W4328007666C78519656 @default.
- W4328007666 hasConceptScore W4328007666C81363708 @default.
- W4328007666 hasLocation W43280076661 @default.
- W4328007666 hasOpenAccess W4328007666 @default.
- W4328007666 hasPrimaryLocation W43280076661 @default.
- W4328007666 hasRelatedWork W2731899572 @default.
- W4328007666 hasRelatedWork W2999805992 @default.
- W4328007666 hasRelatedWork W3116150086 @default.
- W4328007666 hasRelatedWork W3133861977 @default.
- W4328007666 hasRelatedWork W4200173597 @default.
- W4328007666 hasRelatedWork W4223943233 @default.
- W4328007666 hasRelatedWork W4291897433 @default.
- W4328007666 hasRelatedWork W4312417841 @default.
- W4328007666 hasRelatedWork W4321369474 @default.
- W4328007666 hasRelatedWork W4380075502 @default.
- W4328007666 hasVolume "11" @default.
- W4328007666 isParatext "false" @default.
- W4328007666 isRetracted "false" @default.
- W4328007666 workType "article" @default.