Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007675> ?p ?o ?g. }
- W4328007675 endingPage "28415" @default.
- W4328007675 startingPage "28391" @default.
- W4328007675 abstract "With the advancements in reinforcement learning (RL), new variants of this artificial intelligence approach have been introduced in the literature. This has led to increased interest in using RL to address complex issues in diabetes management. Using RL, a decision maker (or agent) observes decision-making factors (or state) from the dynamic operating environment, selects actions based on its optimal policy (i.e., a mapping between states and optimal actions), and subsequently receives delayed rewards. The agent adapts its policy to changes in the operating environment to maximize its cumulative reward as time goes by, thereby improving system performance. This paper presents how various variants of RL have been used to improve diabetes management, such as a higher time in range during which the blood glucose level is within the normal range and a higher similarity between RL and physician’s policies. Key highlights focus on the application of RL in diabetes management, including a taxonomy of the attributes of RL (e.g., roles and advantages), essential elements for training (e.g., data and simulators), representations of diabetes attributes in RL models, and variants of RL algorithms. In addition, this paper discusses open issues and potential future developments in the use of RL in diabetes management." @default.
- W4328007675 created "2023-03-22" @default.
- W4328007675 creator A5003990542 @default.
- W4328007675 creator A5005919811 @default.
- W4328007675 creator A5046333931 @default.
- W4328007675 creator A5055349217 @default.
- W4328007675 creator A5069233011 @default.
- W4328007675 creator A5078603752 @default.
- W4328007675 date "2023-01-01" @default.
- W4328007675 modified "2023-10-06" @default.
- W4328007675 title "Reinforcement Learning Models and Algorithms for Diabetes Management" @default.
- W4328007675 cites W1190237049 @default.
- W4328007675 cites W1452881506 @default.
- W4328007675 cites W14770939 @default.
- W4328007675 cites W1489653209 @default.
- W4328007675 cites W1964588034 @default.
- W4328007675 cites W1973409145 @default.
- W4328007675 cites W1973641708 @default.
- W4328007675 cites W1978686107 @default.
- W4328007675 cites W1982955044 @default.
- W4328007675 cites W1989469424 @default.
- W4328007675 cites W1991698071 @default.
- W4328007675 cites W1998977949 @default.
- W4328007675 cites W2001875222 @default.
- W4328007675 cites W2009027359 @default.
- W4328007675 cites W2025988694 @default.
- W4328007675 cites W2030171821 @default.
- W4328007675 cites W2033453118 @default.
- W4328007675 cites W2041058086 @default.
- W4328007675 cites W2061310674 @default.
- W4328007675 cites W2062794144 @default.
- W4328007675 cites W2067961213 @default.
- W4328007675 cites W2069335580 @default.
- W4328007675 cites W2073510305 @default.
- W4328007675 cites W2105912552 @default.
- W4328007675 cites W2123229781 @default.
- W4328007675 cites W2123628675 @default.
- W4328007675 cites W2126317824 @default.
- W4328007675 cites W2129995532 @default.
- W4328007675 cites W2134982098 @default.
- W4328007675 cites W2148579631 @default.
- W4328007675 cites W2152578678 @default.
- W4328007675 cites W2160566279 @default.
- W4328007675 cites W2165443342 @default.
- W4328007675 cites W2167160009 @default.
- W4328007675 cites W2175465469 @default.
- W4328007675 cites W2319929992 @default.
- W4328007675 cites W2320454588 @default.
- W4328007675 cites W2424760598 @default.
- W4328007675 cites W2461559167 @default.
- W4328007675 cites W2519132385 @default.
- W4328007675 cites W2587843318 @default.
- W4328007675 cites W2736398270 @default.
- W4328007675 cites W2746553466 @default.
- W4328007675 cites W2766239654 @default.
- W4328007675 cites W2766447205 @default.
- W4328007675 cites W2769264260 @default.
- W4328007675 cites W2774742510 @default.
- W4328007675 cites W2791011305 @default.
- W4328007675 cites W2887929199 @default.
- W4328007675 cites W2889345352 @default.
- W4328007675 cites W2897457722 @default.
- W4328007675 cites W2911236815 @default.
- W4328007675 cites W2936233850 @default.
- W4328007675 cites W2947163799 @default.
- W4328007675 cites W2950048237 @default.
- W4328007675 cites W2950218667 @default.
- W4328007675 cites W2963123914 @default.
- W4328007675 cites W2965097915 @default.
- W4328007675 cites W3008110675 @default.
- W4328007675 cites W3014097878 @default.
- W4328007675 cites W3016173377 @default.
- W4328007675 cites W3034950318 @default.
- W4328007675 cites W3036970451 @default.
- W4328007675 cites W3040173376 @default.
- W4328007675 cites W3049720279 @default.
- W4328007675 cites W3086419556 @default.
- W4328007675 cites W3090832565 @default.
- W4328007675 cites W3105102281 @default.
- W4328007675 cites W3119457593 @default.
- W4328007675 cites W3120457190 @default.
- W4328007675 cites W3126468206 @default.
- W4328007675 cites W3138417050 @default.
- W4328007675 cites W3185352449 @default.
- W4328007675 cites W3199814407 @default.
- W4328007675 cites W3200401644 @default.
- W4328007675 cites W3216656735 @default.
- W4328007675 cites W4220744279 @default.
- W4328007675 cites W4283325102 @default.
- W4328007675 cites W4285401283 @default.
- W4328007675 cites W4286282843 @default.
- W4328007675 cites W4289878235 @default.
- W4328007675 cites W786087805 @default.
- W4328007675 doi "https://doi.org/10.1109/access.2023.3259425" @default.
- W4328007675 hasPublicationYear "2023" @default.
- W4328007675 type Work @default.
- W4328007675 citedByCount "1" @default.
- W4328007675 countsByYear W43280076752023 @default.