Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328007760> ?p ?o ?g. }
- W4328007760 endingPage "29198" @default.
- W4328007760 startingPage "29183" @default.
- W4328007760 abstract "The recovery of contextual meanings on a machine code is required by a wide range of binary analysis applications, such as bug discovery, malware analysis, and code clone detection. To accomplish this, advancements on binary code analysis borrow the techniques from natural language processing to automatically infer the underlying semantics of a binary, rather than replying on manual analysis. One of crucial pipelines in this process is instruction normalization, which helps to reduce the number of tokens and to avoid an out-of-vocabulary (OOV) problem. However, existing approaches often substitutes operands with a common token ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>e.g</i> ., callee target → FOO), inevitably resulting in the loss of important information. In this paper, we introduce <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>well-balanced instruction normalization</i> (WIN), a novel approach that retains rich code information while minimizing the downsides of code normalization.With large swaths of binary code, our finding shows that the instruction distribution follows Zipf’s Law like a natural language, a function conveys contextually meaningful information, and the same instruction at different positions may require diverse code representations. To show the effectiveness of WIN, we present DeepSemantic that harnesses the BERT architecture with two training phases: pre-training for generic assembly code representation, and fine-tuning for building a model tailored to a specialized task. We define a downstream task of binary code similarity detection, which requires underlying code semantics. Our experimental results show that our binary similarity model with WIN outperforms two state-of-the-art binary similarity tools, DeepBinDiff and SAFE, with an average improvement of 49.8% and 15.8%, respectively." @default.
- W4328007760 created "2023-03-22" @default.
- W4328007760 creator A5001197502 @default.
- W4328007760 creator A5002028881 @default.
- W4328007760 creator A5060507302 @default.
- W4328007760 creator A5086509965 @default.
- W4328007760 date "2023-01-01" @default.
- W4328007760 modified "2023-10-01" @default.
- W4328007760 title "Binary Code Representation With Well-Balanced Instruction Normalization" @default.
- W4328007760 cites W1573286687 @default.
- W4328007760 cites W1967185446 @default.
- W4328007760 cites W2009614414 @default.
- W4328007760 cites W2012604743 @default.
- W4328007760 cites W2052854541 @default.
- W4328007760 cites W2064675550 @default.
- W4328007760 cites W2102833942 @default.
- W4328007760 cites W2157331557 @default.
- W4328007760 cites W2171590421 @default.
- W4328007760 cites W2439280908 @default.
- W4328007760 cites W2532962075 @default.
- W4328007760 cites W2547625248 @default.
- W4328007760 cites W2559784535 @default.
- W4328007760 cites W2576376563 @default.
- W4328007760 cites W2577142429 @default.
- W4328007760 cites W2601924532 @default.
- W4328007760 cites W2618635610 @default.
- W4328007760 cites W2748690817 @default.
- W4328007760 cites W2806869036 @default.
- W4328007760 cites W2888320512 @default.
- W4328007760 cites W2888698761 @default.
- W4328007760 cites W2901689459 @default.
- W4328007760 cites W2926178846 @default.
- W4328007760 cites W2945316254 @default.
- W4328007760 cites W2945413494 @default.
- W4328007760 cites W2950784811 @default.
- W4328007760 cites W2962739339 @default.
- W4328007760 cites W2963408280 @default.
- W4328007760 cites W2963485370 @default.
- W4328007760 cites W2990954041 @default.
- W4328007760 cites W2997915791 @default.
- W4328007760 cites W2998010923 @default.
- W4328007760 cites W3007413911 @default.
- W4328007760 cites W3010126799 @default.
- W4328007760 cites W3014215579 @default.
- W4328007760 cites W3014224367 @default.
- W4328007760 cites W3014585688 @default.
- W4328007760 cites W3048282123 @default.
- W4328007760 cites W3105926539 @default.
- W4328007760 cites W3156018547 @default.
- W4328007760 cites W4248343126 @default.
- W4328007760 doi "https://doi.org/10.1109/access.2023.3259481" @default.
- W4328007760 hasPublicationYear "2023" @default.
- W4328007760 type Work @default.
- W4328007760 citedByCount "0" @default.
- W4328007760 crossrefType "journal-article" @default.
- W4328007760 hasAuthorship W4328007760A5001197502 @default.
- W4328007760 hasAuthorship W4328007760A5002028881 @default.
- W4328007760 hasAuthorship W4328007760A5060507302 @default.
- W4328007760 hasAuthorship W4328007760A5086509965 @default.
- W4328007760 hasBestOaLocation W43280077601 @default.
- W4328007760 hasConcept C115168132 @default.
- W4328007760 hasConcept C136886441 @default.
- W4328007760 hasConcept C144024400 @default.
- W4328007760 hasConcept C154945302 @default.
- W4328007760 hasConcept C169590947 @default.
- W4328007760 hasConcept C177264268 @default.
- W4328007760 hasConcept C19165224 @default.
- W4328007760 hasConcept C195324797 @default.
- W4328007760 hasConcept C199360897 @default.
- W4328007760 hasConcept C204321447 @default.
- W4328007760 hasConcept C207850805 @default.
- W4328007760 hasConcept C2776760102 @default.
- W4328007760 hasConcept C33923547 @default.
- W4328007760 hasConcept C41008148 @default.
- W4328007760 hasConcept C48372109 @default.
- W4328007760 hasConcept C63435697 @default.
- W4328007760 hasConcept C80444323 @default.
- W4328007760 hasConcept C94375191 @default.
- W4328007760 hasConceptScore W4328007760C115168132 @default.
- W4328007760 hasConceptScore W4328007760C136886441 @default.
- W4328007760 hasConceptScore W4328007760C144024400 @default.
- W4328007760 hasConceptScore W4328007760C154945302 @default.
- W4328007760 hasConceptScore W4328007760C169590947 @default.
- W4328007760 hasConceptScore W4328007760C177264268 @default.
- W4328007760 hasConceptScore W4328007760C19165224 @default.
- W4328007760 hasConceptScore W4328007760C195324797 @default.
- W4328007760 hasConceptScore W4328007760C199360897 @default.
- W4328007760 hasConceptScore W4328007760C204321447 @default.
- W4328007760 hasConceptScore W4328007760C207850805 @default.
- W4328007760 hasConceptScore W4328007760C2776760102 @default.
- W4328007760 hasConceptScore W4328007760C33923547 @default.
- W4328007760 hasConceptScore W4328007760C41008148 @default.
- W4328007760 hasConceptScore W4328007760C48372109 @default.
- W4328007760 hasConceptScore W4328007760C63435697 @default.
- W4328007760 hasConceptScore W4328007760C80444323 @default.
- W4328007760 hasConceptScore W4328007760C94375191 @default.
- W4328007760 hasFunder F4320306076 @default.
- W4328007760 hasFunder F4320308737 @default.