Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328008037> ?p ?o ?g. }
- W4328008037 endingPage "8885" @default.
- W4328008037 startingPage "8846" @default.
- W4328008037 abstract "Graph neural networks (GNNs) have been extensively used in a wide variety of domains in recent years. Owing to their power in analyzing graph-structured data, they have become broadly popular in intelligent transportation systems (ITS) applications as well. Despite their widespread applications in different transportation domains, there is no comprehensive review of recent advancements and future research directions that covers all transportation areas. Accordingly, in this survey, for the first time, we provide an overview of GNN studies in the general domain of ITS. Unlike previous surveys, which have been limited to traffic forecasting problems, we explore how GNN frameworks have evolved for different ITS applications, including traffic forecasting, demand prediction, autonomous vehicles, intersection management, parking management, urban planning, and transportation safety. Also, we micro-categorize the studies based on their transportation application to identify domain-specific research directions, opportunities, and challenges, which have been missing in previous surveys. Moreover, we identify unique and undiscussed research opportunities and directions, which is the result of reviewing a wide range of transportation applications. The neglected role of edge and graph learning in ITS applications, developing multi-modal models, and exploiting the power of unsupervised and reinforcement learning methods for developing more powerful GNNs are some examples of such new discussions in this survey. Finally, we have identified popular baseline models and datasets in each transportation domain, which facilitate the development and evaluation of future GNN-based frameworks." @default.
- W4328008037 created "2023-03-22" @default.
- W4328008037 creator A5022678420 @default.
- W4328008037 creator A5086883629 @default.
- W4328008037 creator A5089721654 @default.
- W4328008037 creator A5090600716 @default.
- W4328008037 date "2023-08-01" @default.
- W4328008037 modified "2023-10-14" @default.
- W4328008037 title "Graph Neural Networks for Intelligent Transportation Systems: A Survey" @default.
- W4328008037 cites W1966690449 @default.
- W4328008037 cites W1973749534 @default.
- W4328008037 cites W1973943669 @default.
- W4328008037 cites W1991770012 @default.
- W4328008037 cites W2019459021 @default.
- W4328008037 cites W2074500080 @default.
- W4328008037 cites W2095654324 @default.
- W4328008037 cites W2105672216 @default.
- W4328008037 cites W2114092915 @default.
- W4328008037 cites W2116597721 @default.
- W4328008037 cites W2117014758 @default.
- W4328008037 cites W2211722331 @default.
- W4328008037 cites W2306644740 @default.
- W4328008037 cites W2475334473 @default.
- W4328008037 cites W2480177474 @default.
- W4328008037 cites W2505763307 @default.
- W4328008037 cites W2528639018 @default.
- W4328008037 cites W2530386080 @default.
- W4328008037 cites W2553307952 @default.
- W4328008037 cites W2560609797 @default.
- W4328008037 cites W2565330852 @default.
- W4328008037 cites W2566236551 @default.
- W4328008037 cites W2576291079 @default.
- W4328008037 cites W2593182953 @default.
- W4328008037 cites W2604847698 @default.
- W4328008037 cites W2612451674 @default.
- W4328008037 cites W2613331518 @default.
- W4328008037 cites W2617994934 @default.
- W4328008037 cites W2623391680 @default.
- W4328008037 cites W2695874637 @default.
- W4328008037 cites W2761568138 @default.
- W4328008037 cites W2772724270 @default.
- W4328008037 cites W2782738497 @default.
- W4328008037 cites W2782920454 @default.
- W4328008037 cites W2788134583 @default.
- W4328008037 cites W2789788750 @default.
- W4328008037 cites W2799109291 @default.
- W4328008037 cites W2808862972 @default.
- W4328008037 cites W2809148419 @default.
- W4328008037 cites W2809334854 @default.
- W4328008037 cites W2809366716 @default.
- W4328008037 cites W2809623940 @default.
- W4328008037 cites W2864415862 @default.
- W4328008037 cites W2884738862 @default.
- W4328008037 cites W2890096158 @default.
- W4328008037 cites W2897876396 @default.
- W4328008037 cites W2900471328 @default.
- W4328008037 cites W2901504064 @default.
- W4328008037 cites W2903871660 @default.
- W4328008037 cites W2904065660 @default.
- W4328008037 cites W2904265202 @default.
- W4328008037 cites W2904832339 @default.
- W4328008037 cites W2906257585 @default.
- W4328008037 cites W2908162093 @default.
- W4328008037 cites W2912985636 @default.
- W4328008037 cites W2915117209 @default.
- W4328008037 cites W2947812485 @default.
- W4328008037 cites W2949732208 @default.
- W4328008037 cites W2950697450 @default.
- W4328008037 cites W2950817888 @default.
- W4328008037 cites W2952254630 @default.
- W4328008037 cites W2962790412 @default.
- W4328008037 cites W2963240573 @default.
- W4328008037 cites W2963312728 @default.
- W4328008037 cites W2963333168 @default.
- W4328008037 cites W2964749398 @default.
- W4328008037 cites W2965341826 @default.
- W4328008037 cites W2965806703 @default.
- W4328008037 cites W2969279223 @default.
- W4328008037 cites W2972752351 @default.
- W4328008037 cites W2973000317 @default.
- W4328008037 cites W2979750740 @default.
- W4328008037 cites W2980806123 @default.
- W4328008037 cites W2983982218 @default.
- W4328008037 cites W2985331920 @default.
- W4328008037 cites W2989010797 @default.
- W4328008037 cites W2989851631 @default.
- W4328008037 cites W2993539758 @default.
- W4328008037 cites W2995932445 @default.
- W4328008037 cites W2996451395 @default.
- W4328008037 cites W2996847713 @default.
- W4328008037 cites W2997156230 @default.
- W4328008037 cites W2997513934 @default.
- W4328008037 cites W2997848713 @default.
- W4328008037 cites W2998332605 @default.
- W4328008037 cites W2998559444 @default.
- W4328008037 cites W3001437801 @default.
- W4328008037 cites W3001859009 @default.
- W4328008037 cites W3008579601 @default.