Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328008210> ?p ?o ?g. }
- W4328008210 endingPage "5882" @default.
- W4328008210 startingPage "5871" @default.
- W4328008210 abstract "The rapid development of logistics and navigation has led to increasing demand for solving route optimization problems in real-time. The traveling salesman problem (TSP) tends to require fast and reliable online solutions, which may not be met by traditional iterative optimization algorithms. In this work, a real-time solution policy is proposed for TSP. The idea is to build a mapping between city information and optimal solutions using deep neural networks. Therefore, when given a new set of city coordinates, the optimal route can be directly and quickly calculated without iteration. Considering the recent advancement in computer vision with deep convolutional neural networks (DCNNs), an image representation is proposed to convert TSP to a computer vision problem. A problem decomposition method is introduced to reduce the mapping complexity. Taking advantage of the powerful fitting capabilities of DCNN, a deep reinforcement learning method is designed without any labeling requirement. The proposed method is superior for real-time applications compared with other algorithms." @default.
- W4328008210 created "2023-03-22" @default.
- W4328008210 creator A5040431226 @default.
- W4328008210 creator A5063706849 @default.
- W4328008210 creator A5065414281 @default.
- W4328008210 date "2023-06-01" @default.
- W4328008210 modified "2023-09-25" @default.
- W4328008210 title "A Deep Reinforcement Learning Based Real-Time Solution Policy for the Traveling Salesman Problem" @default.
- W4328008210 cites W1597286183 @default.
- W4328008210 cites W1850626047 @default.
- W4328008210 cites W2032767523 @default.
- W4328008210 cites W2061594663 @default.
- W4328008210 cites W2113873983 @default.
- W4328008210 cites W2163428398 @default.
- W4328008210 cites W2165698076 @default.
- W4328008210 cites W2194775991 @default.
- W4328008210 cites W2257979135 @default.
- W4328008210 cites W2344786740 @default.
- W4328008210 cites W2346699423 @default.
- W4328008210 cites W2395611524 @default.
- W4328008210 cites W2582693844 @default.
- W4328008210 cites W2618530766 @default.
- W4328008210 cites W2805798351 @default.
- W4328008210 cites W2810479212 @default.
- W4328008210 cites W2888570268 @default.
- W4328008210 cites W2921660753 @default.
- W4328008210 cites W2943930927 @default.
- W4328008210 cites W2961006601 @default.
- W4328008210 cites W2989958156 @default.
- W4328008210 cites W3006419636 @default.
- W4328008210 cites W3007423657 @default.
- W4328008210 cites W3091755028 @default.
- W4328008210 cites W3119186746 @default.
- W4328008210 cites W3127561923 @default.
- W4328008210 cites W3129616587 @default.
- W4328008210 cites W3146106549 @default.
- W4328008210 cites W3181294851 @default.
- W4328008210 cites W3201418760 @default.
- W4328008210 cites W65738273 @default.
- W4328008210 doi "https://doi.org/10.1109/tits.2023.3256563" @default.
- W4328008210 hasPublicationYear "2023" @default.
- W4328008210 type Work @default.
- W4328008210 citedByCount "0" @default.
- W4328008210 crossrefType "journal-article" @default.
- W4328008210 hasAuthorship W4328008210A5040431226 @default.
- W4328008210 hasAuthorship W4328008210A5063706849 @default.
- W4328008210 hasAuthorship W4328008210A5065414281 @default.
- W4328008210 hasConcept C106472803 @default.
- W4328008210 hasConcept C108583219 @default.
- W4328008210 hasConcept C11413529 @default.
- W4328008210 hasConcept C124681953 @default.
- W4328008210 hasConcept C126255220 @default.
- W4328008210 hasConcept C137836250 @default.
- W4328008210 hasConcept C154945302 @default.
- W4328008210 hasConcept C175859090 @default.
- W4328008210 hasConcept C177264268 @default.
- W4328008210 hasConcept C17744445 @default.
- W4328008210 hasConcept C18903297 @default.
- W4328008210 hasConcept C199360897 @default.
- W4328008210 hasConcept C199539241 @default.
- W4328008210 hasConcept C2776359362 @default.
- W4328008210 hasConcept C33923547 @default.
- W4328008210 hasConcept C41008148 @default.
- W4328008210 hasConcept C50644808 @default.
- W4328008210 hasConcept C81363708 @default.
- W4328008210 hasConcept C86803240 @default.
- W4328008210 hasConcept C94625758 @default.
- W4328008210 hasConcept C97541855 @default.
- W4328008210 hasConceptScore W4328008210C106472803 @default.
- W4328008210 hasConceptScore W4328008210C108583219 @default.
- W4328008210 hasConceptScore W4328008210C11413529 @default.
- W4328008210 hasConceptScore W4328008210C124681953 @default.
- W4328008210 hasConceptScore W4328008210C126255220 @default.
- W4328008210 hasConceptScore W4328008210C137836250 @default.
- W4328008210 hasConceptScore W4328008210C154945302 @default.
- W4328008210 hasConceptScore W4328008210C175859090 @default.
- W4328008210 hasConceptScore W4328008210C177264268 @default.
- W4328008210 hasConceptScore W4328008210C17744445 @default.
- W4328008210 hasConceptScore W4328008210C18903297 @default.
- W4328008210 hasConceptScore W4328008210C199360897 @default.
- W4328008210 hasConceptScore W4328008210C199539241 @default.
- W4328008210 hasConceptScore W4328008210C2776359362 @default.
- W4328008210 hasConceptScore W4328008210C33923547 @default.
- W4328008210 hasConceptScore W4328008210C41008148 @default.
- W4328008210 hasConceptScore W4328008210C50644808 @default.
- W4328008210 hasConceptScore W4328008210C81363708 @default.
- W4328008210 hasConceptScore W4328008210C86803240 @default.
- W4328008210 hasConceptScore W4328008210C94625758 @default.
- W4328008210 hasConceptScore W4328008210C97541855 @default.
- W4328008210 hasFunder F4320321001 @default.
- W4328008210 hasFunder F4320326952 @default.
- W4328008210 hasIssue "6" @default.
- W4328008210 hasLocation W43280082101 @default.
- W4328008210 hasOpenAccess W4328008210 @default.
- W4328008210 hasPrimaryLocation W43280082101 @default.
- W4328008210 hasRelatedWork W2035591608 @default.
- W4328008210 hasRelatedWork W2054649128 @default.
- W4328008210 hasRelatedWork W2414143843 @default.