Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328008222> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4328008222 endingPage "9" @default.
- W4328008222 startingPage "1" @default.
- W4328008222 abstract "Electric utilities and planners rely heavily on accurate mid-term load projections to effectively schedule maintenance, coordinate load dispatch, and manage fuel reserves. Current approaches that attempt to forecast electric load for multiple horizons in a single stage, however, often result in inaccurate forecasts due to the lack of information for predicting the data at the farthest horizon and propagation of large errors. To address this issue, this paper presents a two-step mechanism for forecasting electric load that utilizes the benefits of both Backpropagation Neural Networks (BPNNs) and Radial Basis Function Neural Networks (RBFNNs). The first stage utilizes a pool of BPNNs to make partial predictions. BPNNs are used as they are well known for their capability of fast and accurate predictions. In the second stage, RBFNNs are used to make complete forecasts. RBFNNs are known for their ability to model non-linear relationships in the data which is crucial in this stage of the forecast process. Additionally, this paper also proposes a unique method for generating additional training samples by incorporating stacking noise, which adds more variability to the data, increasing the generalization capability of the models, resulting in better forecasting performance. The performance of the proposed framework has been investigated with simulation studies and has been validated on actual load data of Madhya Pradesh Power Transmission System, India. The performance comparison with the existing methods in terms of both accuracy and reliability shows that the proposed forecasting framework provides more accurate results." @default.
- W4328008222 created "2023-03-22" @default.
- W4328008222 creator A5005211624 @default.
- W4328008222 creator A5043163193 @default.
- W4328008222 date "2023-01-01" @default.
- W4328008222 modified "2023-10-16" @default.
- W4328008222 title "A Novel Two-Stage Framework for Mid-Term Electric Load Forecasting" @default.
- W4328008222 doi "https://doi.org/10.1109/tii.2023.3259445" @default.
- W4328008222 hasPublicationYear "2023" @default.
- W4328008222 type Work @default.
- W4328008222 citedByCount "0" @default.
- W4328008222 crossrefType "journal-article" @default.
- W4328008222 hasAuthorship W4328008222A5005211624 @default.
- W4328008222 hasAuthorship W4328008222A5043163193 @default.
- W4328008222 hasConcept C111919701 @default.
- W4328008222 hasConcept C115961682 @default.
- W4328008222 hasConcept C119599485 @default.
- W4328008222 hasConcept C121332964 @default.
- W4328008222 hasConcept C124101348 @default.
- W4328008222 hasConcept C127413603 @default.
- W4328008222 hasConcept C134306372 @default.
- W4328008222 hasConcept C154945302 @default.
- W4328008222 hasConcept C155032097 @default.
- W4328008222 hasConcept C163258240 @default.
- W4328008222 hasConcept C165801399 @default.
- W4328008222 hasConcept C177148314 @default.
- W4328008222 hasConcept C200601418 @default.
- W4328008222 hasConcept C33923547 @default.
- W4328008222 hasConcept C41008148 @default.
- W4328008222 hasConcept C43214815 @default.
- W4328008222 hasConcept C50644808 @default.
- W4328008222 hasConcept C61797465 @default.
- W4328008222 hasConcept C62520636 @default.
- W4328008222 hasConcept C68387754 @default.
- W4328008222 hasConcept C77715397 @default.
- W4328008222 hasConcept C89227174 @default.
- W4328008222 hasConcept C98045186 @default.
- W4328008222 hasConcept C99498987 @default.
- W4328008222 hasConceptScore W4328008222C111919701 @default.
- W4328008222 hasConceptScore W4328008222C115961682 @default.
- W4328008222 hasConceptScore W4328008222C119599485 @default.
- W4328008222 hasConceptScore W4328008222C121332964 @default.
- W4328008222 hasConceptScore W4328008222C124101348 @default.
- W4328008222 hasConceptScore W4328008222C127413603 @default.
- W4328008222 hasConceptScore W4328008222C134306372 @default.
- W4328008222 hasConceptScore W4328008222C154945302 @default.
- W4328008222 hasConceptScore W4328008222C155032097 @default.
- W4328008222 hasConceptScore W4328008222C163258240 @default.
- W4328008222 hasConceptScore W4328008222C165801399 @default.
- W4328008222 hasConceptScore W4328008222C177148314 @default.
- W4328008222 hasConceptScore W4328008222C200601418 @default.
- W4328008222 hasConceptScore W4328008222C33923547 @default.
- W4328008222 hasConceptScore W4328008222C41008148 @default.
- W4328008222 hasConceptScore W4328008222C43214815 @default.
- W4328008222 hasConceptScore W4328008222C50644808 @default.
- W4328008222 hasConceptScore W4328008222C61797465 @default.
- W4328008222 hasConceptScore W4328008222C62520636 @default.
- W4328008222 hasConceptScore W4328008222C68387754 @default.
- W4328008222 hasConceptScore W4328008222C77715397 @default.
- W4328008222 hasConceptScore W4328008222C89227174 @default.
- W4328008222 hasConceptScore W4328008222C98045186 @default.
- W4328008222 hasConceptScore W4328008222C99498987 @default.
- W4328008222 hasLocation W43280082221 @default.
- W4328008222 hasOpenAccess W4328008222 @default.
- W4328008222 hasPrimaryLocation W43280082221 @default.
- W4328008222 hasRelatedWork W1517243424 @default.
- W4328008222 hasRelatedWork W1590022538 @default.
- W4328008222 hasRelatedWork W1971541091 @default.
- W4328008222 hasRelatedWork W1983320489 @default.
- W4328008222 hasRelatedWork W2058422189 @default.
- W4328008222 hasRelatedWork W2370351027 @default.
- W4328008222 hasRelatedWork W2371877363 @default.
- W4328008222 hasRelatedWork W2435007635 @default.
- W4328008222 hasRelatedWork W2983022365 @default.
- W4328008222 hasRelatedWork W99077337 @default.
- W4328008222 isParatext "false" @default.
- W4328008222 isRetracted "false" @default.
- W4328008222 workType "article" @default.