Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328008873> ?p ?o ?g. }
- W4328008873 endingPage "9469" @default.
- W4328008873 startingPage "9443" @default.
- W4328008873 abstract "<abstract> <p>Water pollution prevention and control of the Xiang River has become an issue of great concern to China's central and local governments. To further analyze the effects of central and local governmental policies on water pollution prevention and control for the Xiang River, this study performs a big data analysis of 16 water quality parameters from 42 sections of the mainstream and major tributaries of the Xiang River, Hunan Province, China from 2005 to 2016. This study uses an evidential reasoning-based integrated assessment of water quality and principal component analysis, identifying the spatiotemporal changes in the primary pollutants of the Xiang River and exploring the correlations between potentially relevant factors. The analysis showed that a series of environmental protection policies implemented by Hunan Province since 2008 have had a significant and targeted impact on annual water quality pollutants in the mainstream and tributaries. In addition, regional industrial structures and management policies also have had a significant impact on regional water quality. The results showed that, when examining the changes in water quality and the effects of pollution control policies, a big data analysis of water quality monitoring results can accurately reveal the detailed relationships between management policies and water quality changes in the Xiang River. Compared with policy impact evaluation methods primarily based on econometric models, such a big data analysis has its own advantages and disadvantages, effectively complementing the traditional methods of policy impact evaluations. Policy impact evaluations based on big data analysis can further improve the level of refined management by governments and provide a more specific and targeted reference for improving water pollution management policies for the Xiang River.</p> </abstract>" @default.
- W4328008873 created "2023-03-22" @default.
- W4328008873 creator A5010383742 @default.
- W4328008873 creator A5022026506 @default.
- W4328008873 creator A5034322739 @default.
- W4328008873 creator A5038167206 @default.
- W4328008873 creator A5052667764 @default.
- W4328008873 creator A5052901700 @default.
- W4328008873 date "2023-01-01" @default.
- W4328008873 modified "2023-10-16" @default.
- W4328008873 title "Big data analysis of water quality monitoring results from the Xiang River and an impact analysis of pollution management policies" @default.
- W4328008873 cites W1167617381 @default.
- W4328008873 cites W1968039262 @default.
- W4328008873 cites W1985192327 @default.
- W4328008873 cites W2049337423 @default.
- W4328008873 cites W2055662515 @default.
- W4328008873 cites W2073850260 @default.
- W4328008873 cites W2077073268 @default.
- W4328008873 cites W2088780245 @default.
- W4328008873 cites W2093650890 @default.
- W4328008873 cites W2095984878 @default.
- W4328008873 cites W2104179665 @default.
- W4328008873 cites W2114541394 @default.
- W4328008873 cites W2177927832 @default.
- W4328008873 cites W2243539090 @default.
- W4328008873 cites W2400829371 @default.
- W4328008873 cites W2512900859 @default.
- W4328008873 cites W2788137496 @default.
- W4328008873 cites W2804119863 @default.
- W4328008873 cites W2896448055 @default.
- W4328008873 cites W2974582383 @default.
- W4328008873 cites W3122507110 @default.
- W4328008873 cites W3175247180 @default.
- W4328008873 cites W3185630252 @default.
- W4328008873 cites W3206626070 @default.
- W4328008873 cites W3210334049 @default.
- W4328008873 cites W4200190409 @default.
- W4328008873 cites W4220759000 @default.
- W4328008873 cites W4221008574 @default.
- W4328008873 cites W4293110454 @default.
- W4328008873 cites W4293557233 @default.
- W4328008873 cites W4295643643 @default.
- W4328008873 cites W4301347335 @default.
- W4328008873 cites W4311180726 @default.
- W4328008873 cites W4312619577 @default.
- W4328008873 cites W4312754742 @default.
- W4328008873 cites W4313062280 @default.
- W4328008873 cites W4319459606 @default.
- W4328008873 cites W4320009881 @default.
- W4328008873 cites W4322748707 @default.
- W4328008873 cites W4323342018 @default.
- W4328008873 doi "https://doi.org/10.3934/mbe.2023415" @default.
- W4328008873 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37161251" @default.
- W4328008873 hasPublicationYear "2023" @default.
- W4328008873 type Work @default.
- W4328008873 citedByCount "1" @default.
- W4328008873 countsByYear W43280088732023 @default.
- W4328008873 crossrefType "journal-article" @default.
- W4328008873 hasAuthorship W4328008873A5010383742 @default.
- W4328008873 hasAuthorship W4328008873A5022026506 @default.
- W4328008873 hasAuthorship W4328008873A5034322739 @default.
- W4328008873 hasAuthorship W4328008873A5038167206 @default.
- W4328008873 hasAuthorship W4328008873A5052667764 @default.
- W4328008873 hasAuthorship W4328008873A5052901700 @default.
- W4328008873 hasBestOaLocation W43280088731 @default.
- W4328008873 hasConcept C107826830 @default.
- W4328008873 hasConcept C111472728 @default.
- W4328008873 hasConcept C123587114 @default.
- W4328008873 hasConcept C138885662 @default.
- W4328008873 hasConcept C153823671 @default.
- W4328008873 hasConcept C166957645 @default.
- W4328008873 hasConcept C16828302 @default.
- W4328008873 hasConcept C17744445 @default.
- W4328008873 hasConcept C178790620 @default.
- W4328008873 hasConcept C185592680 @default.
- W4328008873 hasConcept C18903297 @default.
- W4328008873 hasConcept C191935318 @default.
- W4328008873 hasConcept C199539241 @default.
- W4328008873 hasConcept C205649164 @default.
- W4328008873 hasConcept C2777617010 @default.
- W4328008873 hasConcept C2779530757 @default.
- W4328008873 hasConcept C2780797713 @default.
- W4328008873 hasConcept C2984938003 @default.
- W4328008873 hasConcept C39432304 @default.
- W4328008873 hasConcept C521259446 @default.
- W4328008873 hasConcept C524765639 @default.
- W4328008873 hasConcept C58640448 @default.
- W4328008873 hasConcept C82685317 @default.
- W4328008873 hasConcept C86803240 @default.
- W4328008873 hasConcept C91375879 @default.
- W4328008873 hasConceptScore W4328008873C107826830 @default.
- W4328008873 hasConceptScore W4328008873C111472728 @default.
- W4328008873 hasConceptScore W4328008873C123587114 @default.
- W4328008873 hasConceptScore W4328008873C138885662 @default.
- W4328008873 hasConceptScore W4328008873C153823671 @default.
- W4328008873 hasConceptScore W4328008873C166957645 @default.
- W4328008873 hasConceptScore W4328008873C16828302 @default.
- W4328008873 hasConceptScore W4328008873C17744445 @default.