Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328008891> ?p ?o ?g. }
- W4328008891 endingPage "9442" @default.
- W4328008891 startingPage "9423" @default.
- W4328008891 abstract "Somatic cell count (SCC) is a fundamental approach for determining the quality of cattle and bovine milk. So far, different classification and recognition methods have been proposed, all with certain limitations. In this study, we introduced a new deep learning tool, i.e., an improved ResNet50 model constructed based on the residual network and fused with the position attention module and channel attention module to extract the feature information more effectively. In this paper, macrophages, lymphocytes, epithelial cells, and neutrophils were assessed. An image dataset for milk somatic cells was constructed by preprocessing to increase the diversity of samples. PolyLoss was selected as the loss function to solve the unbalanced category samples and difficult sample mining. The Adam optimization algorithm was used to update the gradient, while Warm-up was used to warm up the learning rate to alleviate the overfitting caused by small sample data sets and improve the model's generalization ability. The experimental results showed that the classification accuracy, precision rate, recall rate, and comprehensive evaluation index F value of the proposed model reached 97%, 94.5%, 90.75%, and 92.25%, respectively, indicating that the proposed model could effectively classify the milk somatic cell images, showing a better classification performance than five previous models (i.e., ResNet50, ResNet18, ResNet34, AlexNet andMobileNetv2). The accuracies of the ResNet18, ResNet34, ResNet50, AlexNet, MobileNetv2, and the new model were 95%, 93%, 93%, 56%, 37%, and 97%, respectively. In addition, the comprehensive evaluation index F1 showed the best effect, fully verifying the effectiveness of the proposed method in this paper. The proposed method overcame the limitations of image preprocessing and manual feature extraction by traditional machine learning methods and the limitations of manual feature selection, improving the classification accuracy and showing a strong generalization ability." @default.
- W4328008891 created "2023-03-22" @default.
- W4328008891 creator A5018850495 @default.
- W4328008891 creator A5047306876 @default.
- W4328008891 creator A5052814282 @default.
- W4328008891 creator A5072805204 @default.
- W4328008891 date "2023-01-01" @default.
- W4328008891 modified "2023-10-18" @default.
- W4328008891 title "Classification and recognition of milk somatic cell images based on PolyLoss and PCAM-Reset50" @default.
- W4328008891 cites W1966556797 @default.
- W4328008891 cites W1982698230 @default.
- W4328008891 cites W2039139862 @default.
- W4328008891 cites W2117539524 @default.
- W4328008891 cites W2148504755 @default.
- W4328008891 cites W2151160916 @default.
- W4328008891 cites W2191971702 @default.
- W4328008891 cites W2194775991 @default.
- W4328008891 cites W2422843788 @default.
- W4328008891 cites W2485116416 @default.
- W4328008891 cites W2563823404 @default.
- W4328008891 cites W2607673196 @default.
- W4328008891 cites W2775235649 @default.
- W4328008891 cites W2799926361 @default.
- W4328008891 cites W2810323699 @default.
- W4328008891 cites W2955058313 @default.
- W4328008891 cites W2963163009 @default.
- W4328008891 cites W2963351448 @default.
- W4328008891 cites W2968859244 @default.
- W4328008891 cites W2976295589 @default.
- W4328008891 cites W3004311470 @default.
- W4328008891 cites W3013682536 @default.
- W4328008891 cites W3110258481 @default.
- W4328008891 cites W3126120540 @default.
- W4328008891 cites W3130848108 @default.
- W4328008891 cites W3132799678 @default.
- W4328008891 cites W3132941258 @default.
- W4328008891 cites W3191514888 @default.
- W4328008891 cites W3204313870 @default.
- W4328008891 cites W4206621942 @default.
- W4328008891 cites W4210386084 @default.
- W4328008891 cites W4221138668 @default.
- W4328008891 cites W4226175272 @default.
- W4328008891 cites W4281962665 @default.
- W4328008891 doi "https://doi.org/10.3934/mbe.2023414" @default.
- W4328008891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37161250" @default.
- W4328008891 hasPublicationYear "2023" @default.
- W4328008891 type Work @default.
- W4328008891 citedByCount "0" @default.
- W4328008891 crossrefType "journal-article" @default.
- W4328008891 hasAuthorship W4328008891A5018850495 @default.
- W4328008891 hasAuthorship W4328008891A5047306876 @default.
- W4328008891 hasAuthorship W4328008891A5052814282 @default.
- W4328008891 hasAuthorship W4328008891A5072805204 @default.
- W4328008891 hasBestOaLocation W43280088911 @default.
- W4328008891 hasConcept C115961682 @default.
- W4328008891 hasConcept C134306372 @default.
- W4328008891 hasConcept C138885662 @default.
- W4328008891 hasConcept C153180895 @default.
- W4328008891 hasConcept C154945302 @default.
- W4328008891 hasConcept C177148314 @default.
- W4328008891 hasConcept C185592680 @default.
- W4328008891 hasConcept C198531522 @default.
- W4328008891 hasConcept C22019652 @default.
- W4328008891 hasConcept C2776401178 @default.
- W4328008891 hasConcept C33923547 @default.
- W4328008891 hasConcept C34736171 @default.
- W4328008891 hasConcept C41008148 @default.
- W4328008891 hasConcept C41895202 @default.
- W4328008891 hasConcept C43617362 @default.
- W4328008891 hasConcept C50644808 @default.
- W4328008891 hasConceptScore W4328008891C115961682 @default.
- W4328008891 hasConceptScore W4328008891C134306372 @default.
- W4328008891 hasConceptScore W4328008891C138885662 @default.
- W4328008891 hasConceptScore W4328008891C153180895 @default.
- W4328008891 hasConceptScore W4328008891C154945302 @default.
- W4328008891 hasConceptScore W4328008891C177148314 @default.
- W4328008891 hasConceptScore W4328008891C185592680 @default.
- W4328008891 hasConceptScore W4328008891C198531522 @default.
- W4328008891 hasConceptScore W4328008891C22019652 @default.
- W4328008891 hasConceptScore W4328008891C2776401178 @default.
- W4328008891 hasConceptScore W4328008891C33923547 @default.
- W4328008891 hasConceptScore W4328008891C34736171 @default.
- W4328008891 hasConceptScore W4328008891C41008148 @default.
- W4328008891 hasConceptScore W4328008891C41895202 @default.
- W4328008891 hasConceptScore W4328008891C43617362 @default.
- W4328008891 hasConceptScore W4328008891C50644808 @default.
- W4328008891 hasIssue "5" @default.
- W4328008891 hasLocation W43280088911 @default.
- W4328008891 hasLocation W43280088912 @default.
- W4328008891 hasOpenAccess W4328008891 @default.
- W4328008891 hasPrimaryLocation W43280088911 @default.
- W4328008891 hasRelatedWork W2066259560 @default.
- W4328008891 hasRelatedWork W2126100045 @default.
- W4328008891 hasRelatedWork W2262783296 @default.
- W4328008891 hasRelatedWork W2380927352 @default.
- W4328008891 hasRelatedWork W2391959412 @default.
- W4328008891 hasRelatedWork W2546942002 @default.
- W4328008891 hasRelatedWork W2742991909 @default.