Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328010931> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4328010931 abstract "Currently, the need for real-time COVID-19 detection methods with minimal tools and cost is an important challenge. The available methods are still difficult to apply, slow, costly, and their accuracy is low. In this work, a novel machine learning-based framework to predict COVID-19 is proposed, which is based on rapid inpatient clinical tests of lung and heart function. Compared with current cognition therapy techniques, the proposed framework can significantly improve the accuracy and time performance of COVID-19 diagnosis without any lab or equipment requirements. In this work, five parameters of clinical testing were adopted; Respiration rate, Heart rate, systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure. After obtaining results for these tests, a pre-trained intelligent model based on Random Forest Tree (RFT) machine learning algorithm is used for detection. This model was trained by about 13,558 records of the COVID19 testing dataset collected from King Faisal Specialist Hospital and Research Centre (KFSH&RC) in Saudi Arabia. Experiments have shown that the proposed framework performs highly in detecting COVID infections by 96.9%. Its results can be output in minutes, which supports clinical staff in screening COVID-19 patients from their inpatient clinical data." @default.
- W4328010931 created "2023-03-22" @default.
- W4328010931 creator A5004734725 @default.
- W4328010931 creator A5016237371 @default.
- W4328010931 creator A5049760888 @default.
- W4328010931 creator A5078990476 @default.
- W4328010931 creator A5087436950 @default.
- W4328010931 date "2022-12-17" @default.
- W4328010931 modified "2023-09-26" @default.
- W4328010931 title "A New Machine Learning Framework for Detecting COVID-19 From Clinical Data on Lung And Heart Function" @default.
- W4328010931 cites W2140187489 @default.
- W4328010931 cites W2626931877 @default.
- W4328010931 cites W2911964244 @default.
- W4328010931 cites W3034711653 @default.
- W4328010931 cites W3080441768 @default.
- W4328010931 cites W3108908728 @default.
- W4328010931 cites W3118490356 @default.
- W4328010931 cites W3129691521 @default.
- W4328010931 cites W3134036592 @default.
- W4328010931 cites W3156289484 @default.
- W4328010931 cites W3162810948 @default.
- W4328010931 cites W3180100733 @default.
- W4328010931 cites W3189284249 @default.
- W4328010931 cites W3196324719 @default.
- W4328010931 cites W3199310194 @default.
- W4328010931 cites W3211300968 @default.
- W4328010931 cites W4206371608 @default.
- W4328010931 cites W4214494845 @default.
- W4328010931 cites W4220781789 @default.
- W4328010931 cites W4229335297 @default.
- W4328010931 doi "https://doi.org/10.1109/nccc57165.2022.10067357" @default.
- W4328010931 hasPublicationYear "2022" @default.
- W4328010931 type Work @default.
- W4328010931 citedByCount "0" @default.
- W4328010931 crossrefType "proceedings-article" @default.
- W4328010931 hasAuthorship W4328010931A5004734725 @default.
- W4328010931 hasAuthorship W4328010931A5016237371 @default.
- W4328010931 hasAuthorship W4328010931A5049760888 @default.
- W4328010931 hasAuthorship W4328010931A5078990476 @default.
- W4328010931 hasAuthorship W4328010931A5087436950 @default.
- W4328010931 hasConcept C119857082 @default.
- W4328010931 hasConcept C126322002 @default.
- W4328010931 hasConcept C154945302 @default.
- W4328010931 hasConcept C169258074 @default.
- W4328010931 hasConcept C2777953023 @default.
- W4328010931 hasConcept C2779134260 @default.
- W4328010931 hasConcept C3008058167 @default.
- W4328010931 hasConcept C41008148 @default.
- W4328010931 hasConcept C524204448 @default.
- W4328010931 hasConcept C71924100 @default.
- W4328010931 hasConcept C84393581 @default.
- W4328010931 hasConcept C84525736 @default.
- W4328010931 hasConceptScore W4328010931C119857082 @default.
- W4328010931 hasConceptScore W4328010931C126322002 @default.
- W4328010931 hasConceptScore W4328010931C154945302 @default.
- W4328010931 hasConceptScore W4328010931C169258074 @default.
- W4328010931 hasConceptScore W4328010931C2777953023 @default.
- W4328010931 hasConceptScore W4328010931C2779134260 @default.
- W4328010931 hasConceptScore W4328010931C3008058167 @default.
- W4328010931 hasConceptScore W4328010931C41008148 @default.
- W4328010931 hasConceptScore W4328010931C524204448 @default.
- W4328010931 hasConceptScore W4328010931C71924100 @default.
- W4328010931 hasConceptScore W4328010931C84393581 @default.
- W4328010931 hasConceptScore W4328010931C84525736 @default.
- W4328010931 hasLocation W43280109311 @default.
- W4328010931 hasOpenAccess W4328010931 @default.
- W4328010931 hasPrimaryLocation W43280109311 @default.
- W4328010931 hasRelatedWork W3204641204 @default.
- W4328010931 hasRelatedWork W3210877509 @default.
- W4328010931 hasRelatedWork W4200057378 @default.
- W4328010931 hasRelatedWork W4200196661 @default.
- W4328010931 hasRelatedWork W4205958290 @default.
- W4328010931 hasRelatedWork W4249746146 @default.
- W4328010931 hasRelatedWork W4283016678 @default.
- W4328010931 hasRelatedWork W4308191010 @default.
- W4328010931 hasRelatedWork W4318350883 @default.
- W4328010931 hasRelatedWork W4320483443 @default.
- W4328010931 isParatext "false" @default.
- W4328010931 isRetracted "false" @default.
- W4328010931 workType "article" @default.