Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328010945> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4328010945 abstract "Research into Arabic Aspect Category Detection (ACD), a subtask of Aspect-Based Sentiment Analysis (ABSA) is primarily focused on experimenting with Machine Learning (ML) and Deep Learning (DL) models, but rarely consider methods for robust dataset creation or augmentation. Therefore, this study investigates and compares two applications of AraBERT vr2 on the Arabic SemEval2016 hotel dataset, where the objective is to predict aspect categories in the reviews. The baseline pipeline uses the AraBERT classification layer to predict 34 aspect categories, and the proposed pipeline performs a data augmentation process prior to classification, where the HARD dataset is used with a Word2Vec model to extend the original training of the SemEval2016 dataset. Both implementations of AraBERT were evaluated on Gold Standard dataset derived from SemEval2016. Results indicate that both applications achieved a closely similar f1-score of 0.663 for the baseline and 0.661 for the augmented model. The by-class results are further discussed." @default.
- W4328010945 created "2023-03-22" @default.
- W4328010945 creator A5088266974 @default.
- W4328010945 date "2022-12-17" @default.
- W4328010945 modified "2023-09-27" @default.
- W4328010945 title "Enhance the Aspect Category Detection in Arabic Language using AraBERT and Text Augmentation" @default.
- W4328010945 cites W2345493290 @default.
- W4328010945 cites W2465978385 @default.
- W4328010945 cites W2787956672 @default.
- W4328010945 cites W2895547478 @default.
- W4328010945 cites W2964054038 @default.
- W4328010945 cites W3077780682 @default.
- W4328010945 cites W3148105069 @default.
- W4328010945 cites W3159769479 @default.
- W4328010945 cites W3174828871 @default.
- W4328010945 cites W3200106903 @default.
- W4328010945 cites W3214319339 @default.
- W4328010945 doi "https://doi.org/10.1109/nccc57165.2022.10067648" @default.
- W4328010945 hasPublicationYear "2022" @default.
- W4328010945 type Work @default.
- W4328010945 citedByCount "0" @default.
- W4328010945 crossrefType "proceedings-article" @default.
- W4328010945 hasAuthorship W4328010945A5088266974 @default.
- W4328010945 hasConcept C111368507 @default.
- W4328010945 hasConcept C111919701 @default.
- W4328010945 hasConcept C115903868 @default.
- W4328010945 hasConcept C119857082 @default.
- W4328010945 hasConcept C12725497 @default.
- W4328010945 hasConcept C127313418 @default.
- W4328010945 hasConcept C138885662 @default.
- W4328010945 hasConcept C154945302 @default.
- W4328010945 hasConcept C199360897 @default.
- W4328010945 hasConcept C204321447 @default.
- W4328010945 hasConcept C26713055 @default.
- W4328010945 hasConcept C2776461190 @default.
- W4328010945 hasConcept C41008148 @default.
- W4328010945 hasConcept C41608201 @default.
- W4328010945 hasConcept C41895202 @default.
- W4328010945 hasConcept C43521106 @default.
- W4328010945 hasConcept C96455323 @default.
- W4328010945 hasConcept C98045186 @default.
- W4328010945 hasConceptScore W4328010945C111368507 @default.
- W4328010945 hasConceptScore W4328010945C111919701 @default.
- W4328010945 hasConceptScore W4328010945C115903868 @default.
- W4328010945 hasConceptScore W4328010945C119857082 @default.
- W4328010945 hasConceptScore W4328010945C12725497 @default.
- W4328010945 hasConceptScore W4328010945C127313418 @default.
- W4328010945 hasConceptScore W4328010945C138885662 @default.
- W4328010945 hasConceptScore W4328010945C154945302 @default.
- W4328010945 hasConceptScore W4328010945C199360897 @default.
- W4328010945 hasConceptScore W4328010945C204321447 @default.
- W4328010945 hasConceptScore W4328010945C26713055 @default.
- W4328010945 hasConceptScore W4328010945C2776461190 @default.
- W4328010945 hasConceptScore W4328010945C41008148 @default.
- W4328010945 hasConceptScore W4328010945C41608201 @default.
- W4328010945 hasConceptScore W4328010945C41895202 @default.
- W4328010945 hasConceptScore W4328010945C43521106 @default.
- W4328010945 hasConceptScore W4328010945C96455323 @default.
- W4328010945 hasConceptScore W4328010945C98045186 @default.
- W4328010945 hasLocation W43280109451 @default.
- W4328010945 hasOpenAccess W4328010945 @default.
- W4328010945 hasPrimaryLocation W43280109451 @default.
- W4328010945 hasRelatedWork W2020540721 @default.
- W4328010945 hasRelatedWork W2435130738 @default.
- W4328010945 hasRelatedWork W2746217931 @default.
- W4328010945 hasRelatedWork W2810280135 @default.
- W4328010945 hasRelatedWork W2933807343 @default.
- W4328010945 hasRelatedWork W2948806562 @default.
- W4328010945 hasRelatedWork W3107474891 @default.
- W4328010945 hasRelatedWork W3107602296 @default.
- W4328010945 hasRelatedWork W4211165872 @default.
- W4328010945 hasRelatedWork W4312833533 @default.
- W4328010945 isParatext "false" @default.
- W4328010945 isRetracted "false" @default.
- W4328010945 workType "article" @default.