Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328011081> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4328011081 abstract "Recent history has shown many cases where organizations have been attacked through less secure points in their supply chains. Supply chains are defined as a series of steps taken to obtain a product or service for a customer. Cybersecurity threats target the most vulnerable points in these organizations to inflict damage to them. The cascading effect that can result from the complexity of supply chains has made them an ambitious target for hackers to reach more victims and information, whether from people or organizations. Therefore, there was a need to predict threats that can affect supply chains using machine learning and artificial intelligence techniques to reduce these threats and put in place the best controls as a proactive step that would reduce and avoid the consequences. In this research, Microsoft Malware Predictions dataset was used to predict cyber threats for cyber supply chains. Five machine learning algorithms were used to predict threats, including knearest neighbor algorithm, support vector machine, logistic regression, random forest, and LightGBM. The results show that out of the five algorithms used, Random Forest algorithm and LightGBM algorithm have good and high accuracy with 72% compared to the other three, followed by Logistic Regression algorithm and Support Vector Machine algorithm and finally kNearest Neighbor algorithm which is less accurate than the other algorithms." @default.
- W4328011081 created "2023-03-22" @default.
- W4328011081 creator A5039062354 @default.
- W4328011081 creator A5047498741 @default.
- W4328011081 date "2022-12-17" @default.
- W4328011081 modified "2023-09-26" @default.
- W4328011081 title "Predicting Cyber Threats Using Machine Learning for Improving Cyber Supply Chain Security" @default.
- W4328011081 cites W1629811776 @default.
- W4328011081 cites W1974799041 @default.
- W4328011081 cites W1989164810 @default.
- W4328011081 cites W2014565200 @default.
- W4328011081 cites W2031254140 @default.
- W4328011081 cites W2127062979 @default.
- W4328011081 cites W2187422502 @default.
- W4328011081 cites W2479743319 @default.
- W4328011081 cites W2512189246 @default.
- W4328011081 cites W2548015322 @default.
- W4328011081 cites W2919469235 @default.
- W4328011081 cites W2964769731 @default.
- W4328011081 cites W3015197769 @default.
- W4328011081 cites W3015447433 @default.
- W4328011081 cites W3016062171 @default.
- W4328011081 cites W3025204993 @default.
- W4328011081 cites W3126247438 @default.
- W4328011081 cites W3135028703 @default.
- W4328011081 cites W3171687382 @default.
- W4328011081 cites W3176785816 @default.
- W4328011081 cites W3184930951 @default.
- W4328011081 doi "https://doi.org/10.1109/nccc57165.2022.10067692" @default.
- W4328011081 hasPublicationYear "2022" @default.
- W4328011081 type Work @default.
- W4328011081 citedByCount "0" @default.
- W4328011081 crossrefType "proceedings-article" @default.
- W4328011081 hasAuthorship W4328011081A5039062354 @default.
- W4328011081 hasAuthorship W4328011081A5047498741 @default.
- W4328011081 hasConcept C108713360 @default.
- W4328011081 hasConcept C11413529 @default.
- W4328011081 hasConcept C119857082 @default.
- W4328011081 hasConcept C12267149 @default.
- W4328011081 hasConcept C124101348 @default.
- W4328011081 hasConcept C144133560 @default.
- W4328011081 hasConcept C151956035 @default.
- W4328011081 hasConcept C154945302 @default.
- W4328011081 hasConcept C162853370 @default.
- W4328011081 hasConcept C169258074 @default.
- W4328011081 hasConcept C201307755 @default.
- W4328011081 hasConcept C2780378061 @default.
- W4328011081 hasConcept C38652104 @default.
- W4328011081 hasConcept C41008148 @default.
- W4328011081 hasConcept C541664917 @default.
- W4328011081 hasConcept C86844869 @default.
- W4328011081 hasConceptScore W4328011081C108713360 @default.
- W4328011081 hasConceptScore W4328011081C11413529 @default.
- W4328011081 hasConceptScore W4328011081C119857082 @default.
- W4328011081 hasConceptScore W4328011081C12267149 @default.
- W4328011081 hasConceptScore W4328011081C124101348 @default.
- W4328011081 hasConceptScore W4328011081C144133560 @default.
- W4328011081 hasConceptScore W4328011081C151956035 @default.
- W4328011081 hasConceptScore W4328011081C154945302 @default.
- W4328011081 hasConceptScore W4328011081C162853370 @default.
- W4328011081 hasConceptScore W4328011081C169258074 @default.
- W4328011081 hasConceptScore W4328011081C201307755 @default.
- W4328011081 hasConceptScore W4328011081C2780378061 @default.
- W4328011081 hasConceptScore W4328011081C38652104 @default.
- W4328011081 hasConceptScore W4328011081C41008148 @default.
- W4328011081 hasConceptScore W4328011081C541664917 @default.
- W4328011081 hasConceptScore W4328011081C86844869 @default.
- W4328011081 hasLocation W43280110811 @default.
- W4328011081 hasOpenAccess W4328011081 @default.
- W4328011081 hasPrimaryLocation W43280110811 @default.
- W4328011081 hasRelatedWork W2979979539 @default.
- W4328011081 hasRelatedWork W3137532542 @default.
- W4328011081 hasRelatedWork W3195168932 @default.
- W4328011081 hasRelatedWork W4205958290 @default.
- W4328011081 hasRelatedWork W4246246790 @default.
- W4328011081 hasRelatedWork W4285237370 @default.
- W4328011081 hasRelatedWork W4286744707 @default.
- W4328011081 hasRelatedWork W4312707991 @default.
- W4328011081 hasRelatedWork W4320483443 @default.
- W4328011081 hasRelatedWork W4321636153 @default.
- W4328011081 isParatext "false" @default.
- W4328011081 isRetracted "false" @default.
- W4328011081 workType "article" @default.