Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328011717> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4328011717 abstract "The Viterbi algorithm is one of the most commonly used methods for decoding convolutional codes, which outputs a maximum-likelihood codeword for the input sequence. However, the complexity of the Viterbi algorithm is high when the constraint length is large. To address this issue, we propose a hybrid algorithm that contains at most two stages for decoding convolutional codes in this paper. In the first stage, the normalized min-sum algorithm (NMSA) with a small number of iterations is applied. If the output of the NMSA is not a codeword, the scarce-state-transition (SST) Viterbi algorithm is invoked for the second stage of decoding. We provide a method for constructing the input vector of the SST Viterbi algorithm, from which a truncating method is further presented for complexity reduction. Simulation results on two rate-l/2 convolutional codes show that the proposed hybrid algorithm has little performance degradation compared with the Viterbi algorithm. Meanwhile, the complexity of the proposed hybrid algorithm is reduced, especially in the high signal-to-noise ratio region." @default.
- W4328011717 created "2023-03-22" @default.
- W4328011717 creator A5065075576 @default.
- W4328011717 creator A5081010201 @default.
- W4328011717 date "2022-12-09" @default.
- W4328011717 modified "2023-09-26" @default.
- W4328011717 title "Low-Complexity Hybrid Algorithm for Decoding Convolutional Codes" @default.
- W4328011717 cites W2008420412 @default.
- W4328011717 cites W2030960331 @default.
- W4328011717 cites W2071878365 @default.
- W4328011717 cites W2080694809 @default.
- W4328011717 cites W2100653058 @default.
- W4328011717 cites W2121074861 @default.
- W4328011717 cites W2122683098 @default.
- W4328011717 cites W2133395317 @default.
- W4328011717 cites W2143884373 @default.
- W4328011717 cites W2150304372 @default.
- W4328011717 cites W2150368154 @default.
- W4328011717 cites W2152011388 @default.
- W4328011717 cites W2169335080 @default.
- W4328011717 cites W2172278029 @default.
- W4328011717 cites W2295959799 @default.
- W4328011717 cites W2964334568 @default.
- W4328011717 cites W4211090054 @default.
- W4328011717 cites W51177791 @default.
- W4328011717 doi "https://doi.org/10.1109/iccc56324.2022.10065728" @default.
- W4328011717 hasPublicationYear "2022" @default.
- W4328011717 type Work @default.
- W4328011717 citedByCount "0" @default.
- W4328011717 crossrefType "proceedings-article" @default.
- W4328011717 hasAuthorship W4328011717A5065075576 @default.
- W4328011717 hasAuthorship W4328011717A5081010201 @default.
- W4328011717 hasConcept C113638808 @default.
- W4328011717 hasConcept C11413529 @default.
- W4328011717 hasConcept C117379686 @default.
- W4328011717 hasConcept C119857082 @default.
- W4328011717 hasConcept C130319729 @default.
- W4328011717 hasConcept C132727834 @default.
- W4328011717 hasConcept C153207627 @default.
- W4328011717 hasConcept C157125643 @default.
- W4328011717 hasConcept C157899210 @default.
- W4328011717 hasConcept C163836022 @default.
- W4328011717 hasConcept C179799912 @default.
- W4328011717 hasConcept C193969084 @default.
- W4328011717 hasConcept C196455857 @default.
- W4328011717 hasConcept C204397858 @default.
- W4328011717 hasConcept C33529081 @default.
- W4328011717 hasConcept C41008148 @default.
- W4328011717 hasConcept C54907487 @default.
- W4328011717 hasConcept C57273362 @default.
- W4328011717 hasConcept C60582962 @default.
- W4328011717 hasConcept C78944582 @default.
- W4328011717 hasConcept C98763669 @default.
- W4328011717 hasConceptScore W4328011717C113638808 @default.
- W4328011717 hasConceptScore W4328011717C11413529 @default.
- W4328011717 hasConceptScore W4328011717C117379686 @default.
- W4328011717 hasConceptScore W4328011717C119857082 @default.
- W4328011717 hasConceptScore W4328011717C130319729 @default.
- W4328011717 hasConceptScore W4328011717C132727834 @default.
- W4328011717 hasConceptScore W4328011717C153207627 @default.
- W4328011717 hasConceptScore W4328011717C157125643 @default.
- W4328011717 hasConceptScore W4328011717C157899210 @default.
- W4328011717 hasConceptScore W4328011717C163836022 @default.
- W4328011717 hasConceptScore W4328011717C179799912 @default.
- W4328011717 hasConceptScore W4328011717C193969084 @default.
- W4328011717 hasConceptScore W4328011717C196455857 @default.
- W4328011717 hasConceptScore W4328011717C204397858 @default.
- W4328011717 hasConceptScore W4328011717C33529081 @default.
- W4328011717 hasConceptScore W4328011717C41008148 @default.
- W4328011717 hasConceptScore W4328011717C54907487 @default.
- W4328011717 hasConceptScore W4328011717C57273362 @default.
- W4328011717 hasConceptScore W4328011717C60582962 @default.
- W4328011717 hasConceptScore W4328011717C78944582 @default.
- W4328011717 hasConceptScore W4328011717C98763669 @default.
- W4328011717 hasLocation W43280117171 @default.
- W4328011717 hasOpenAccess W4328011717 @default.
- W4328011717 hasPrimaryLocation W43280117171 @default.
- W4328011717 hasRelatedWork W1646609213 @default.
- W4328011717 hasRelatedWork W1900871934 @default.
- W4328011717 hasRelatedWork W1979933166 @default.
- W4328011717 hasRelatedWork W2004646282 @default.
- W4328011717 hasRelatedWork W2109702161 @default.
- W4328011717 hasRelatedWork W2165098971 @default.
- W4328011717 hasRelatedWork W2185874953 @default.
- W4328011717 hasRelatedWork W4328011717 @default.
- W4328011717 hasRelatedWork W84313228 @default.
- W4328011717 hasRelatedWork W2252778796 @default.
- W4328011717 isParatext "false" @default.
- W4328011717 isRetracted "false" @default.
- W4328011717 workType "article" @default.