Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328011783> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4328011783 abstract "In recent years, with the exponential growth of network traffic and the increase of network attacks, anomaly detection of network traffic has always been a hot research issue. Many network traffic anomaly detection studies focus on the temporal characteristics of network traffic. However, most of these studies start from statistical characteristics and pursue the accuracy of network traffic anomaly detection, which lead to the lag of network traffic anomaly detection. In this paper, a network traffic anomaly detection method combining temporal convolution network and dynamic time warping algorithm is proposed to solve the lag problem of network traffic anomaly detection. The predictor trained by temporal convolution network can predict what the user's next benign behavior series should be like from the user's current behavior series, and then the dynamic time warping algorithm can judge the abnormal user by calculating the similarity between the user's actual behavior series and the predicted behavior series. We carried out our verification experiment on the original pcap file of CICIDS2017 dataset, and finally achieved an average negative sample recall rate of 92% and a false alarm rate of less than 40%. This result is ideal on the premise of ensuring timeliness. It can be used as the first level screening system of the intrusion detection system to screen possible criminal attackers in time, so that network security managers can make timely security measures. We will continue to improve our research to reduce false positives." @default.
- W4328011783 created "2023-03-22" @default.
- W4328011783 creator A5008003239 @default.
- W4328011783 creator A5039426038 @default.
- W4328011783 creator A5045067652 @default.
- W4328011783 creator A5083773369 @default.
- W4328011783 date "2022-12-09" @default.
- W4328011783 modified "2023-09-23" @default.
- W4328011783 title "Research on Network Traffic Anomaly Detection Method Based on Temporal Convolutional Network" @default.
- W4328011783 cites W2101109743 @default.
- W4328011783 cites W2111160323 @default.
- W4328011783 cites W2157331557 @default.
- W4328011783 cites W2172040238 @default.
- W4328011783 cites W2278186031 @default.
- W4328011783 cites W2335999708 @default.
- W4328011783 cites W2753588101 @default.
- W4328011783 cites W2755146079 @default.
- W4328011783 cites W2789828921 @default.
- W4328011783 cites W2909665293 @default.
- W4328011783 cites W2921134108 @default.
- W4328011783 cites W2944851425 @default.
- W4328011783 cites W2958285686 @default.
- W4328011783 cites W2960015156 @default.
- W4328011783 cites W2963608065 @default.
- W4328011783 cites W3177472101 @default.
- W4328011783 cites W3202760407 @default.
- W4328011783 cites W4240592325 @default.
- W4328011783 cites W4241560327 @default.
- W4328011783 doi "https://doi.org/10.1109/iccc56324.2022.10065846" @default.
- W4328011783 hasPublicationYear "2022" @default.
- W4328011783 type Work @default.
- W4328011783 citedByCount "1" @default.
- W4328011783 countsByYear W43280117832023 @default.
- W4328011783 crossrefType "proceedings-article" @default.
- W4328011783 hasAuthorship W4328011783A5008003239 @default.
- W4328011783 hasAuthorship W4328011783A5039426038 @default.
- W4328011783 hasAuthorship W4328011783A5045067652 @default.
- W4328011783 hasAuthorship W4328011783A5083773369 @default.
- W4328011783 hasConcept C119857082 @default.
- W4328011783 hasConcept C121332964 @default.
- W4328011783 hasConcept C124101348 @default.
- W4328011783 hasConcept C12997251 @default.
- W4328011783 hasConcept C151406439 @default.
- W4328011783 hasConcept C154945302 @default.
- W4328011783 hasConcept C182590292 @default.
- W4328011783 hasConcept C26873012 @default.
- W4328011783 hasConcept C31258907 @default.
- W4328011783 hasConcept C35525427 @default.
- W4328011783 hasConcept C41008148 @default.
- W4328011783 hasConcept C739882 @default.
- W4328011783 hasConcept C77052588 @default.
- W4328011783 hasConcept C79403827 @default.
- W4328011783 hasConcept C88516994 @default.
- W4328011783 hasConceptScore W4328011783C119857082 @default.
- W4328011783 hasConceptScore W4328011783C121332964 @default.
- W4328011783 hasConceptScore W4328011783C124101348 @default.
- W4328011783 hasConceptScore W4328011783C12997251 @default.
- W4328011783 hasConceptScore W4328011783C151406439 @default.
- W4328011783 hasConceptScore W4328011783C154945302 @default.
- W4328011783 hasConceptScore W4328011783C182590292 @default.
- W4328011783 hasConceptScore W4328011783C26873012 @default.
- W4328011783 hasConceptScore W4328011783C31258907 @default.
- W4328011783 hasConceptScore W4328011783C35525427 @default.
- W4328011783 hasConceptScore W4328011783C41008148 @default.
- W4328011783 hasConceptScore W4328011783C739882 @default.
- W4328011783 hasConceptScore W4328011783C77052588 @default.
- W4328011783 hasConceptScore W4328011783C79403827 @default.
- W4328011783 hasConceptScore W4328011783C88516994 @default.
- W4328011783 hasLocation W43280117831 @default.
- W4328011783 hasOpenAccess W4328011783 @default.
- W4328011783 hasPrimaryLocation W43280117831 @default.
- W4328011783 hasRelatedWork W1987029079 @default.
- W4328011783 hasRelatedWork W2094557237 @default.
- W4328011783 hasRelatedWork W2127961541 @default.
- W4328011783 hasRelatedWork W2149686398 @default.
- W4328011783 hasRelatedWork W2363068348 @default.
- W4328011783 hasRelatedWork W2377356555 @default.
- W4328011783 hasRelatedWork W2506205276 @default.
- W4328011783 hasRelatedWork W2546797064 @default.
- W4328011783 hasRelatedWork W2785391232 @default.
- W4328011783 hasRelatedWork W2988433590 @default.
- W4328011783 isParatext "false" @default.
- W4328011783 isRetracted "false" @default.
- W4328011783 workType "article" @default.