Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328011841> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4328011841 abstract "The integrity of water quality data has an important impact on water quality prediction and analysis, so it is necessary to impute the missing values in the data. However, at present, most of the relevant studies on missing value imputation of water quality data focus on a small number of discontinuous missing values, but in many cases, there are a large number of continuous missing values. Therefore, this paper proposes a hybrid model to predict a large number of continuous missing values in the water quality data. The model integrates Bi-LSTM, Self-attention mechanism and transfer learning. The model first calculates the similarity between the sequences with missing values and other complete sequences, then trains the base model BLSA (Bi-LSTM+Self-attention) based on the most similar complete sequences, and finally applies the idea of transfer learning to migrate the model to obtain the model for predicting and filling the missing sequences. In order to verify the effectiveness and practicability of the model, this paper takes the dissolved oxygen concentration of five automatic monitoring stations in Liao River (Liaoning, China) as an example. The results show that the model can effectively predict a large number of continuous missing values in the water quality time series data." @default.
- W4328011841 created "2023-03-22" @default.
- W4328011841 creator A5042099505 @default.
- W4328011841 creator A5043839950 @default.
- W4328011841 creator A5051764626 @default.
- W4328011841 creator A5065630227 @default.
- W4328011841 creator A5069941337 @default.
- W4328011841 date "2022-12-09" @default.
- W4328011841 modified "2023-10-18" @default.
- W4328011841 title "Application of Deep Learning and Transfer Learning in Continuous Missing Value Imputation of Water Quality Data" @default.
- W4328011841 cites W160971523 @default.
- W4328011841 cites W2165698076 @default.
- W4328011841 cites W2247991820 @default.
- W4328011841 cites W2973192623 @default.
- W4328011841 cites W2980820631 @default.
- W4328011841 cites W3005657599 @default.
- W4328011841 cites W3031080090 @default.
- W4328011841 cites W3035348935 @default.
- W4328011841 cites W3046711798 @default.
- W4328011841 cites W3089076410 @default.
- W4328011841 cites W3097014986 @default.
- W4328011841 cites W3102208177 @default.
- W4328011841 cites W3157129049 @default.
- W4328011841 doi "https://doi.org/10.1109/iccc56324.2022.10065657" @default.
- W4328011841 hasPublicationYear "2022" @default.
- W4328011841 type Work @default.
- W4328011841 citedByCount "0" @default.
- W4328011841 crossrefType "proceedings-article" @default.
- W4328011841 hasAuthorship W4328011841A5042099505 @default.
- W4328011841 hasAuthorship W4328011841A5043839950 @default.
- W4328011841 hasAuthorship W4328011841A5051764626 @default.
- W4328011841 hasAuthorship W4328011841A5065630227 @default.
- W4328011841 hasAuthorship W4328011841A5069941337 @default.
- W4328011841 hasConcept C119857082 @default.
- W4328011841 hasConcept C124101348 @default.
- W4328011841 hasConcept C150899416 @default.
- W4328011841 hasConcept C154945302 @default.
- W4328011841 hasConcept C18903297 @default.
- W4328011841 hasConcept C2780797713 @default.
- W4328011841 hasConcept C41008148 @default.
- W4328011841 hasConcept C58041806 @default.
- W4328011841 hasConcept C67186912 @default.
- W4328011841 hasConcept C77088390 @default.
- W4328011841 hasConcept C86803240 @default.
- W4328011841 hasConcept C9357733 @default.
- W4328011841 hasConceptScore W4328011841C119857082 @default.
- W4328011841 hasConceptScore W4328011841C124101348 @default.
- W4328011841 hasConceptScore W4328011841C150899416 @default.
- W4328011841 hasConceptScore W4328011841C154945302 @default.
- W4328011841 hasConceptScore W4328011841C18903297 @default.
- W4328011841 hasConceptScore W4328011841C2780797713 @default.
- W4328011841 hasConceptScore W4328011841C41008148 @default.
- W4328011841 hasConceptScore W4328011841C58041806 @default.
- W4328011841 hasConceptScore W4328011841C67186912 @default.
- W4328011841 hasConceptScore W4328011841C77088390 @default.
- W4328011841 hasConceptScore W4328011841C86803240 @default.
- W4328011841 hasConceptScore W4328011841C9357733 @default.
- W4328011841 hasFunder F4320315893 @default.
- W4328011841 hasFunder F4320324679 @default.
- W4328011841 hasLocation W43280118411 @default.
- W4328011841 hasOpenAccess W4328011841 @default.
- W4328011841 hasPrimaryLocation W43280118411 @default.
- W4328011841 hasRelatedWork W1560161678 @default.
- W4328011841 hasRelatedWork W1996309649 @default.
- W4328011841 hasRelatedWork W2899300491 @default.
- W4328011841 hasRelatedWork W2994560360 @default.
- W4328011841 hasRelatedWork W3136396548 @default.
- W4328011841 hasRelatedWork W3158644168 @default.
- W4328011841 hasRelatedWork W4214497138 @default.
- W4328011841 hasRelatedWork W4284688182 @default.
- W4328011841 hasRelatedWork W4285147743 @default.
- W4328011841 hasRelatedWork W4328011841 @default.
- W4328011841 isParatext "false" @default.
- W4328011841 isRetracted "false" @default.
- W4328011841 workType "article" @default.