Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328049160> ?p ?o ?g. }
- W4328049160 endingPage "2587" @default.
- W4328049160 startingPage "2574" @default.
- W4328049160 abstract "Rationale and Objectives We aim to explore the value of chest CT radiomics in predicting the epidermal growth factor receptor (EGFR)-T790M resistance mutation of advanced non-small cell lung cancer (NSCLC) patients after the failure of first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI). Materials and Methods A total of 211 and 135 advanced NSCLC patients with tumor tissue-based (Cohort-1) or circulating tumor DNA (ctDNA)-based (Cohort-2) EGFR-T790M testing were included, respectively. Cohort-1 was used for modeling and Cohort-2 was for models’ validation. Radiomic features were extracted from tumor lesions on chest nonenhanced CT (NECT) and/or contrast-enhanced CT (CECT). We used eight feature selectors and eight classifier algorithms to establish radiomic models. Models were evaluated by area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). Results CT morphological manifestations of peripheral location and pleural indentation sign were associated with EGFR-T790M. For NECT, CECT, and NECT+CECT radiomic features, the feature selector and classifier algorithms of LASSO and Stepwise logistic regression, Boruta and SVM, and LASSO and SVM were chosen to develop the optimal model, respectively (AUC: 0.844, 0.811, and 0.897). All models performed well in calibration curves and DCA. Independent validation of models in Cohort-2 revealed that both NECT and CECT models individually had limited power for predicting EGFR-T790M mutation detected by ctDNA (AUC: 0.649, 0.675), while the NECT+CECT radiomic model had a satisfactory AUC (0.760). Conclusion This study proved the feasibility of using CT radiomic features to predict the EGFR-T790M resistance mutation, which could be helpful in guiding personalized therapeutic strategies. We aim to explore the value of chest CT radiomics in predicting the epidermal growth factor receptor (EGFR)-T790M resistance mutation of advanced non-small cell lung cancer (NSCLC) patients after the failure of first-line EGFR-tyrosine kinase inhibitor (EGFR-TKI). A total of 211 and 135 advanced NSCLC patients with tumor tissue-based (Cohort-1) or circulating tumor DNA (ctDNA)-based (Cohort-2) EGFR-T790M testing were included, respectively. Cohort-1 was used for modeling and Cohort-2 was for models’ validation. Radiomic features were extracted from tumor lesions on chest nonenhanced CT (NECT) and/or contrast-enhanced CT (CECT). We used eight feature selectors and eight classifier algorithms to establish radiomic models. Models were evaluated by area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). CT morphological manifestations of peripheral location and pleural indentation sign were associated with EGFR-T790M. For NECT, CECT, and NECT+CECT radiomic features, the feature selector and classifier algorithms of LASSO and Stepwise logistic regression, Boruta and SVM, and LASSO and SVM were chosen to develop the optimal model, respectively (AUC: 0.844, 0.811, and 0.897). All models performed well in calibration curves and DCA. Independent validation of models in Cohort-2 revealed that both NECT and CECT models individually had limited power for predicting EGFR-T790M mutation detected by ctDNA (AUC: 0.649, 0.675), while the NECT+CECT radiomic model had a satisfactory AUC (0.760). This study proved the feasibility of using CT radiomic features to predict the EGFR-T790M resistance mutation, which could be helpful in guiding personalized therapeutic strategies." @default.
- W4328049160 created "2023-03-22" @default.
- W4328049160 creator A5019429833 @default.
- W4328049160 creator A5029079971 @default.
- W4328049160 creator A5053192318 @default.
- W4328049160 creator A5055407722 @default.
- W4328049160 creator A5057796157 @default.
- W4328049160 creator A5088136757 @default.
- W4328049160 date "2023-11-01" @default.
- W4328049160 modified "2023-10-18" @default.
- W4328049160 title "CT Radiomics Predict EGFR-T790M Resistance Mutation in Advanced Non-Small Cell Lung Cancer Patients After Progression on First-line EGFR-TKI" @default.
- W4328049160 cites W1607191560 @default.
- W4328049160 cites W1986606168 @default.
- W4328049160 cites W2019607817 @default.
- W4328049160 cites W2040299716 @default.
- W4328049160 cites W2096198395 @default.
- W4328049160 cites W2100047106 @default.
- W4328049160 cites W2138089710 @default.
- W4328049160 cites W2145643405 @default.
- W4328049160 cites W2145980885 @default.
- W4328049160 cites W2148174696 @default.
- W4328049160 cites W2149733252 @default.
- W4328049160 cites W2154149901 @default.
- W4328049160 cites W2174661749 @default.
- W4328049160 cites W2283460279 @default.
- W4328049160 cites W2292347930 @default.
- W4328049160 cites W2530038065 @default.
- W4328049160 cites W2536396512 @default.
- W4328049160 cites W2548145417 @default.
- W4328049160 cites W2560717039 @default.
- W4328049160 cites W2591118779 @default.
- W4328049160 cites W2736835377 @default.
- W4328049160 cites W2767128594 @default.
- W4328049160 cites W2775847164 @default.
- W4328049160 cites W2781993955 @default.
- W4328049160 cites W2789301976 @default.
- W4328049160 cites W2883368524 @default.
- W4328049160 cites W2884746788 @default.
- W4328049160 cites W2903120675 @default.
- W4328049160 cites W2923148806 @default.
- W4328049160 cites W2963073866 @default.
- W4328049160 cites W2984759084 @default.
- W4328049160 cites W2998789541 @default.
- W4328049160 cites W2999691771 @default.
- W4328049160 cites W3003975456 @default.
- W4328049160 cites W3005291879 @default.
- W4328049160 cites W3011780798 @default.
- W4328049160 cites W3096690547 @default.
- W4328049160 cites W3106522254 @default.
- W4328049160 cites W3113050690 @default.
- W4328049160 cites W3134666836 @default.
- W4328049160 cites W3162422809 @default.
- W4328049160 cites W3191259318 @default.
- W4328049160 cites W3204566111 @default.
- W4328049160 cites W4206841660 @default.
- W4328049160 cites W4234236664 @default.
- W4328049160 cites W4235965497 @default.
- W4328049160 cites W4283314999 @default.
- W4328049160 cites W828015039 @default.
- W4328049160 doi "https://doi.org/10.1016/j.acra.2023.01.040" @default.
- W4328049160 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36941156" @default.
- W4328049160 hasPublicationYear "2023" @default.
- W4328049160 type Work @default.
- W4328049160 citedByCount "1" @default.
- W4328049160 crossrefType "journal-article" @default.
- W4328049160 hasAuthorship W4328049160A5019429833 @default.
- W4328049160 hasAuthorship W4328049160A5029079971 @default.
- W4328049160 hasAuthorship W4328049160A5053192318 @default.
- W4328049160 hasAuthorship W4328049160A5055407722 @default.
- W4328049160 hasAuthorship W4328049160A5057796157 @default.
- W4328049160 hasAuthorship W4328049160A5088136757 @default.
- W4328049160 hasConcept C121608353 @default.
- W4328049160 hasConcept C126322002 @default.
- W4328049160 hasConcept C126838900 @default.
- W4328049160 hasConcept C143998085 @default.
- W4328049160 hasConcept C151956035 @default.
- W4328049160 hasConcept C2776256026 @default.
- W4328049160 hasConcept C2777930144 @default.
- W4328049160 hasConcept C2778559731 @default.
- W4328049160 hasConcept C2779438470 @default.
- W4328049160 hasConcept C2780580887 @default.
- W4328049160 hasConcept C58471807 @default.
- W4328049160 hasConcept C71924100 @default.
- W4328049160 hasConcept C72563966 @default.
- W4328049160 hasConcept C76318530 @default.
- W4328049160 hasConceptScore W4328049160C121608353 @default.
- W4328049160 hasConceptScore W4328049160C126322002 @default.
- W4328049160 hasConceptScore W4328049160C126838900 @default.
- W4328049160 hasConceptScore W4328049160C143998085 @default.
- W4328049160 hasConceptScore W4328049160C151956035 @default.
- W4328049160 hasConceptScore W4328049160C2776256026 @default.
- W4328049160 hasConceptScore W4328049160C2777930144 @default.
- W4328049160 hasConceptScore W4328049160C2778559731 @default.
- W4328049160 hasConceptScore W4328049160C2779438470 @default.
- W4328049160 hasConceptScore W4328049160C2780580887 @default.
- W4328049160 hasConceptScore W4328049160C58471807 @default.
- W4328049160 hasConceptScore W4328049160C71924100 @default.
- W4328049160 hasConceptScore W4328049160C72563966 @default.