Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328049223> ?p ?o ?g. }
- W4328049223 endingPage "S159" @default.
- W4328049223 startingPage "S149" @default.
- W4328049223 abstract "Abstract Objectives To evaluate whether combining fast acquisitions with deep-learning reconstruction can provide diagnostically useful images and quantitative assessment comparable to standard-of-care acquisitions for lumbar spine magnetic resonance imaging (MRI). Methods Eighteen patients were imaged with both standard protocol and fast protocol using reduced signal averages, each protocol including sagittal fat-suppressed T2-weighted, sagittal T1-weighted, and axial T2-weighted 2D fast spin-echo sequences. Fast-acquisition data was additionally reconstructed using vendor-supplied deep-learning reconstruction with three different noise reduction factors. For qualitative analysis, standard images as well as fast images with and without deep-learning reconstruction were graded by three radiologists on five different categories. For quantitative analysis, convolutional neural networks were applied to sagittal T1-weighted images to segment intervertebral discs and vertebral bodies, and disc heights and vertebral body volumes were derived. Results Based on noninferiority testing on qualitative scores, fast images without deep-learning reconstruction were inferior to standard images for most categories. However, deep-learning reconstruction improved the average scores, and noninferiority was observed over 24 out of 45 comparisons (all with sagittal T2-weighted images while 4/5 comparisons with sagittal T1-weighted and axial T2-weighted images). Interobserver variability increased with 50 and 75% noise reduction factors. Deep-learning reconstructed fast images with 50% and 75% noise reduction factors had comparable disc heights and vertebral body volumes to standard images (r2≥ 0.86 for disc heights and r2≥ 0.98 for vertebral body volumes). Conclusions This study demonstrated that deep-learning-reconstructed fast-acquisition images have the potential to provide noninferior image quality and comparable quantitative assessment to standard clinical images." @default.
- W4328049223 created "2023-03-22" @default.
- W4328049223 creator A5006203153 @default.
- W4328049223 creator A5018209888 @default.
- W4328049223 creator A5044652728 @default.
- W4328049223 creator A5051765330 @default.
- W4328049223 creator A5055982305 @default.
- W4328049223 creator A5064765354 @default.
- W4328049223 creator A5067918450 @default.
- W4328049223 creator A5089352436 @default.
- W4328049223 creator A5090458723 @default.
- W4328049223 creator A5091513295 @default.
- W4328049223 date "2023-03-21" @default.
- W4328049223 modified "2023-10-15" @default.
- W4328049223 title "Technology and Tool Development for BACPAC: Qualitative and Quantitative Analysis of Accelerated Lumbar Spine MRI with Deep-Learning Based Image Reconstruction at 3T" @default.
- W4328049223 cites W1966188170 @default.
- W4328049223 cites W1989077880 @default.
- W4328049223 cites W2001028523 @default.
- W4328049223 cites W2007414430 @default.
- W4328049223 cites W2014547837 @default.
- W4328049223 cites W2016063621 @default.
- W4328049223 cites W2016941404 @default.
- W4328049223 cites W2020475468 @default.
- W4328049223 cites W2028412825 @default.
- W4328049223 cites W2070176794 @default.
- W4328049223 cites W2084706776 @default.
- W4328049223 cites W2086898699 @default.
- W4328049223 cites W2087485068 @default.
- W4328049223 cites W2101675075 @default.
- W4328049223 cites W2103011429 @default.
- W4328049223 cites W2106263593 @default.
- W4328049223 cites W2109643048 @default.
- W4328049223 cites W2111388536 @default.
- W4328049223 cites W2111887260 @default.
- W4328049223 cites W2125208830 @default.
- W4328049223 cites W2137376529 @default.
- W4328049223 cites W2141841210 @default.
- W4328049223 cites W2203834106 @default.
- W4328049223 cites W2331924070 @default.
- W4328049223 cites W2508457857 @default.
- W4328049223 cites W2574578275 @default.
- W4328049223 cites W2604388535 @default.
- W4328049223 cites W2611157489 @default.
- W4328049223 cites W2611467245 @default.
- W4328049223 cites W2894154035 @default.
- W4328049223 cites W2913026589 @default.
- W4328049223 cites W2944140779 @default.
- W4328049223 cites W3097918907 @default.
- W4328049223 cites W3098795775 @default.
- W4328049223 cites W3127700360 @default.
- W4328049223 cites W3173013790 @default.
- W4328049223 cites W3189420585 @default.
- W4328049223 cites W4220853605 @default.
- W4328049223 cites W4220962366 @default.
- W4328049223 cites W4245219653 @default.
- W4328049223 cites W4249760698 @default.
- W4328049223 cites W4286210774 @default.
- W4328049223 cites W4294921393 @default.
- W4328049223 cites W4307775677 @default.
- W4328049223 cites W54257720 @default.
- W4328049223 doi "https://doi.org/10.1093/pm/pnad035" @default.
- W4328049223 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36943371" @default.
- W4328049223 hasPublicationYear "2023" @default.
- W4328049223 type Work @default.
- W4328049223 citedByCount "0" @default.
- W4328049223 crossrefType "journal-article" @default.
- W4328049223 hasAuthorship W4328049223A5006203153 @default.
- W4328049223 hasAuthorship W4328049223A5018209888 @default.
- W4328049223 hasAuthorship W4328049223A5044652728 @default.
- W4328049223 hasAuthorship W4328049223A5051765330 @default.
- W4328049223 hasAuthorship W4328049223A5055982305 @default.
- W4328049223 hasAuthorship W4328049223A5064765354 @default.
- W4328049223 hasAuthorship W4328049223A5067918450 @default.
- W4328049223 hasAuthorship W4328049223A5089352436 @default.
- W4328049223 hasAuthorship W4328049223A5090458723 @default.
- W4328049223 hasAuthorship W4328049223A5091513295 @default.
- W4328049223 hasBestOaLocation W43280492231 @default.
- W4328049223 hasConcept C105795698 @default.
- W4328049223 hasConcept C108583219 @default.
- W4328049223 hasConcept C111335779 @default.
- W4328049223 hasConcept C126838900 @default.
- W4328049223 hasConcept C143409427 @default.
- W4328049223 hasConcept C154945302 @default.
- W4328049223 hasConcept C178910020 @default.
- W4328049223 hasConcept C22679943 @default.
- W4328049223 hasConcept C2524010 @default.
- W4328049223 hasConcept C2989005 @default.
- W4328049223 hasConcept C33923547 @default.
- W4328049223 hasConcept C41008148 @default.
- W4328049223 hasConcept C44575665 @default.
- W4328049223 hasConcept C71924100 @default.
- W4328049223 hasConcept C81363708 @default.
- W4328049223 hasConceptScore W4328049223C105795698 @default.
- W4328049223 hasConceptScore W4328049223C108583219 @default.
- W4328049223 hasConceptScore W4328049223C111335779 @default.
- W4328049223 hasConceptScore W4328049223C126838900 @default.
- W4328049223 hasConceptScore W4328049223C143409427 @default.
- W4328049223 hasConceptScore W4328049223C154945302 @default.