Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328049322> ?p ?o ?g. }
- W4328049322 abstract "Abstract Motivation Deep learning attained excellent results in digital pathology recently. A challenge with its use is that high quality, representative training datasets are required to build robust models. Data annotation in the domain is labor intensive and demands substantial time commitment from expert pathologists. Active learning (AL) is a strategy to minimize annotation. The goal is to select samples from the pool of unlabeled data for annotation that improves model accuracy. However, AL is a very compute demanding approach. The benefits for model learning may vary according to the strategy used, and it may be hard for a domain specialist to fine tune the solution without an integrated interface. Results We developed a framework that includes a friendly user interface along with run-time optimizations to reduce annotation and execution time in AL in digital pathology. Our solution implements several AL strategies along with our diversity-aware data acquisition (DADA) acquisition function, which enforces data diversity to improve the prediction performance of a model. In this work, we employed a model simplification strategy [Network Auto-Reduction (NAR)] that significantly improves AL execution time when coupled with DADA. NAR produces less compute demanding models, which replace the target models during the AL process to reduce processing demands. An evaluation with a tumor-infiltrating lymphocytes classification application shows that: (i) DADA attains superior performance compared to state-of-the-art AL strategies for different convolutional neural networks (CNNs), (ii) NAR improves the AL execution time by up to 4.3×, and (iii) target models trained with patches/data selected by the NAR reduced versions achieve similar or superior classification quality to using target CNNs for data selection. Availability and implementation Source code: https://github.com/alsmeirelles/DADA." @default.
- W4328049322 created "2023-03-22" @default.
- W4328049322 creator A5002002434 @default.
- W4328049322 creator A5037383891 @default.
- W4328049322 creator A5045023056 @default.
- W4328049322 creator A5066949209 @default.
- W4328049322 creator A5072946826 @default.
- W4328049322 creator A5076465098 @default.
- W4328049322 date "2023-03-21" @default.
- W4328049322 modified "2023-09-27" @default.
- W4328049322 title "Effective and efficient active learning for deep learning-based tissue image analysis" @default.
- W4328049322 cites W1760562407 @default.
- W4328049322 cites W2069087118 @default.
- W4328049322 cites W2076910098 @default.
- W4328049322 cites W2200290088 @default.
- W4328049322 cites W2796409016 @default.
- W4328049322 cites W2807019580 @default.
- W4328049322 cites W2883111419 @default.
- W4328049322 cites W2889978276 @default.
- W4328049322 cites W2922239620 @default.
- W4328049322 cites W2978575375 @default.
- W4328049322 cites W3016045558 @default.
- W4328049322 cites W3081081614 @default.
- W4328049322 cites W3160261825 @default.
- W4328049322 cites W3160859670 @default.
- W4328049322 cites W3186317940 @default.
- W4328049322 cites W4224295454 @default.
- W4328049322 cites W4281638478 @default.
- W4328049322 doi "https://doi.org/10.1093/bioinformatics/btad138" @default.
- W4328049322 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36943380" @default.
- W4328049322 hasPublicationYear "2023" @default.
- W4328049322 type Work @default.
- W4328049322 citedByCount "0" @default.
- W4328049322 crossrefType "journal-article" @default.
- W4328049322 hasAuthorship W4328049322A5002002434 @default.
- W4328049322 hasAuthorship W4328049322A5037383891 @default.
- W4328049322 hasAuthorship W4328049322A5045023056 @default.
- W4328049322 hasAuthorship W4328049322A5066949209 @default.
- W4328049322 hasAuthorship W4328049322A5072946826 @default.
- W4328049322 hasAuthorship W4328049322A5076465098 @default.
- W4328049322 hasBestOaLocation W43280493221 @default.
- W4328049322 hasConcept C108583219 @default.
- W4328049322 hasConcept C111335779 @default.
- W4328049322 hasConcept C111919701 @default.
- W4328049322 hasConcept C113843644 @default.
- W4328049322 hasConcept C119857082 @default.
- W4328049322 hasConcept C129307140 @default.
- W4328049322 hasConcept C134306372 @default.
- W4328049322 hasConcept C14036430 @default.
- W4328049322 hasConcept C154945302 @default.
- W4328049322 hasConcept C157915830 @default.
- W4328049322 hasConcept C173608175 @default.
- W4328049322 hasConcept C207685749 @default.
- W4328049322 hasConcept C2524010 @default.
- W4328049322 hasConcept C2776321320 @default.
- W4328049322 hasConcept C33923547 @default.
- W4328049322 hasConcept C36503486 @default.
- W4328049322 hasConcept C41008148 @default.
- W4328049322 hasConcept C78458016 @default.
- W4328049322 hasConcept C81363708 @default.
- W4328049322 hasConcept C86803240 @default.
- W4328049322 hasConcept C98045186 @default.
- W4328049322 hasConceptScore W4328049322C108583219 @default.
- W4328049322 hasConceptScore W4328049322C111335779 @default.
- W4328049322 hasConceptScore W4328049322C111919701 @default.
- W4328049322 hasConceptScore W4328049322C113843644 @default.
- W4328049322 hasConceptScore W4328049322C119857082 @default.
- W4328049322 hasConceptScore W4328049322C129307140 @default.
- W4328049322 hasConceptScore W4328049322C134306372 @default.
- W4328049322 hasConceptScore W4328049322C14036430 @default.
- W4328049322 hasConceptScore W4328049322C154945302 @default.
- W4328049322 hasConceptScore W4328049322C157915830 @default.
- W4328049322 hasConceptScore W4328049322C173608175 @default.
- W4328049322 hasConceptScore W4328049322C207685749 @default.
- W4328049322 hasConceptScore W4328049322C2524010 @default.
- W4328049322 hasConceptScore W4328049322C2776321320 @default.
- W4328049322 hasConceptScore W4328049322C33923547 @default.
- W4328049322 hasConceptScore W4328049322C36503486 @default.
- W4328049322 hasConceptScore W4328049322C41008148 @default.
- W4328049322 hasConceptScore W4328049322C78458016 @default.
- W4328049322 hasConceptScore W4328049322C81363708 @default.
- W4328049322 hasConceptScore W4328049322C86803240 @default.
- W4328049322 hasConceptScore W4328049322C98045186 @default.
- W4328049322 hasIssue "4" @default.
- W4328049322 hasLocation W43280493221 @default.
- W4328049322 hasLocation W43280493222 @default.
- W4328049322 hasLocation W43280493223 @default.
- W4328049322 hasOpenAccess W4328049322 @default.
- W4328049322 hasPrimaryLocation W43280493221 @default.
- W4328049322 hasRelatedWork W2731899572 @default.
- W4328049322 hasRelatedWork W2999805992 @default.
- W4328049322 hasRelatedWork W3116150086 @default.
- W4328049322 hasRelatedWork W3133861977 @default.
- W4328049322 hasRelatedWork W4200173597 @default.
- W4328049322 hasRelatedWork W4223943233 @default.
- W4328049322 hasRelatedWork W4291897433 @default.
- W4328049322 hasRelatedWork W4312417841 @default.
- W4328049322 hasRelatedWork W4321369474 @default.
- W4328049322 hasRelatedWork W4380075502 @default.
- W4328049322 hasVolume "39" @default.