Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328049597> ?p ?o ?g. }
- W4328049597 abstract "Background Diagnosis of shockable rhythms leading to defibrillation remains integral to improving out-of-hospital cardiac arrest outcomes. New machine learning techniques have emerged to diagnose arrhythmias on ECGs. In out-of-hospital cardiac arrest, an algorithm within an automated external defibrillator is the major determinant to deliver defibrillation. This study developed and validated the performance of a convolution neural network (CNN) to diagnose shockable arrhythmias within a novel, miniaturized automated external defibrillator. Methods and Results There were 26 464 single-lead ECGs that comprised the study data set. ECGs of 7-s duration were retrospectively adjudicated by 3 physician readers (N=18 total readers). After exclusions (N=1582), ECGs were divided into training (N=23 156), validation (N=721), and test data sets (N=1005). CNN performance to diagnose shockable and nonshockable rhythms was reported with area under the receiver operating characteristic curve analysis, F1, and sensitivity and specificity calculations. The duration for the CNN to output was reported with the algorithm running within the automated external defibrillator. Internal and external validation analyses included CNN performance among arrhythmias, often mistaken for shockable rhythms, and performance among ECGs modified with noise to mimic artifacts. The CNN algorithm achieved an area under the receiver operating characteristic curve of 0.995 (95% CI, 0.990-1.0), sensitivity of 98%, and specificity of 100% to diagnose shockable rhythms. The F1 scores were 0.990 and 0.995 for shockable and nonshockable rhythms, respectively. After input of a 7-s ECG, the CNN generated an output in 383±29 ms (total time of 7.383 s). The CNN outperformed adjudicators in classifying atrial arrhythmias as nonshockable (specificity of 99.3%-98.1%) and was robust against noise artifacts (area under the receiver operating characteristic curve range, 0.871-0.999). Conclusions We demonstrate high diagnostic performance of a CNN algorithm for shockable and nonshockable rhythm arrhythmia classifications within a digitally connected automated external defibrillator. Registration URL: https://clinicaltrials.gov/ct2/show/NCT03662802; Unique identifier: NCT03662802." @default.
- W4328049597 created "2023-03-22" @default.
- W4328049597 creator A5004824522 @default.
- W4328049597 creator A5006021560 @default.
- W4328049597 creator A5010491671 @default.
- W4328049597 creator A5015527972 @default.
- W4328049597 creator A5034232787 @default.
- W4328049597 creator A5037576955 @default.
- W4328049597 creator A5040742743 @default.
- W4328049597 creator A5047050520 @default.
- W4328049597 creator A5049723677 @default.
- W4328049597 creator A5052667383 @default.
- W4328049597 creator A5075213080 @default.
- W4328049597 creator A5081604594 @default.
- W4328049597 creator A5082105985 @default.
- W4328049597 creator A5090377040 @default.
- W4328049597 date "2023-04-18" @default.
- W4328049597 modified "2023-10-16" @default.
- W4328049597 title "Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator" @default.
- W4328049597 cites W1592495849 @default.
- W4328049597 cites W1625958017 @default.
- W4328049597 cites W2010876479 @default.
- W4328049597 cites W2012835963 @default.
- W4328049597 cites W2044497371 @default.
- W4328049597 cites W2100983247 @default.
- W4328049597 cites W2157538006 @default.
- W4328049597 cites W2162800060 @default.
- W4328049597 cites W2186972525 @default.
- W4328049597 cites W2201258657 @default.
- W4328049597 cites W2492557229 @default.
- W4328049597 cites W2546788046 @default.
- W4328049597 cites W2615830851 @default.
- W4328049597 cites W2763588040 @default.
- W4328049597 cites W2770096843 @default.
- W4328049597 cites W2889891960 @default.
- W4328049597 cites W2901226889 @default.
- W4328049597 cites W2901944246 @default.
- W4328049597 cites W2902644322 @default.
- W4328049597 cites W2944905766 @default.
- W4328049597 cites W2946849350 @default.
- W4328049597 cites W2952183630 @default.
- W4328049597 cites W3008117014 @default.
- W4328049597 cites W3011630145 @default.
- W4328049597 cites W3024959804 @default.
- W4328049597 cites W3027608091 @default.
- W4328049597 cites W3037487808 @default.
- W4328049597 cites W3093949537 @default.
- W4328049597 cites W3094353471 @default.
- W4328049597 cites W3110411105 @default.
- W4328049597 cites W3127657277 @default.
- W4328049597 cites W3172090230 @default.
- W4328049597 cites W3175148633 @default.
- W4328049597 cites W3188409561 @default.
- W4328049597 cites W3212883348 @default.
- W4328049597 cites W4214575058 @default.
- W4328049597 doi "https://doi.org/10.1161/jaha.122.026974" @default.
- W4328049597 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36942628" @default.
- W4328049597 hasPublicationYear "2023" @default.
- W4328049597 type Work @default.
- W4328049597 citedByCount "2" @default.
- W4328049597 countsByYear W43280495972023 @default.
- W4328049597 crossrefType "journal-article" @default.
- W4328049597 hasAuthorship W4328049597A5004824522 @default.
- W4328049597 hasAuthorship W4328049597A5006021560 @default.
- W4328049597 hasAuthorship W4328049597A5010491671 @default.
- W4328049597 hasAuthorship W4328049597A5015527972 @default.
- W4328049597 hasAuthorship W4328049597A5034232787 @default.
- W4328049597 hasAuthorship W4328049597A5037576955 @default.
- W4328049597 hasAuthorship W4328049597A5040742743 @default.
- W4328049597 hasAuthorship W4328049597A5047050520 @default.
- W4328049597 hasAuthorship W4328049597A5049723677 @default.
- W4328049597 hasAuthorship W4328049597A5052667383 @default.
- W4328049597 hasAuthorship W4328049597A5075213080 @default.
- W4328049597 hasAuthorship W4328049597A5081604594 @default.
- W4328049597 hasAuthorship W4328049597A5082105985 @default.
- W4328049597 hasAuthorship W4328049597A5090377040 @default.
- W4328049597 hasBestOaLocation W43280495971 @default.
- W4328049597 hasConcept C11413529 @default.
- W4328049597 hasConcept C119857082 @default.
- W4328049597 hasConcept C126322002 @default.
- W4328049597 hasConcept C154945302 @default.
- W4328049597 hasConcept C164705383 @default.
- W4328049597 hasConcept C194828623 @default.
- W4328049597 hasConcept C2777055891 @default.
- W4328049597 hasConcept C2777795826 @default.
- W4328049597 hasConcept C2778165595 @default.
- W4328049597 hasConcept C2779729227 @default.
- W4328049597 hasConcept C2781005686 @default.
- W4328049597 hasConcept C41008148 @default.
- W4328049597 hasConcept C50644808 @default.
- W4328049597 hasConcept C58471807 @default.
- W4328049597 hasConcept C71924100 @default.
- W4328049597 hasConcept C81363708 @default.
- W4328049597 hasConceptScore W4328049597C11413529 @default.
- W4328049597 hasConceptScore W4328049597C119857082 @default.
- W4328049597 hasConceptScore W4328049597C126322002 @default.
- W4328049597 hasConceptScore W4328049597C154945302 @default.
- W4328049597 hasConceptScore W4328049597C164705383 @default.
- W4328049597 hasConceptScore W4328049597C194828623 @default.
- W4328049597 hasConceptScore W4328049597C2777055891 @default.