Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328049607> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4328049607 abstract "HomeRadiologyVol. 307, No. 3 PreviousNext Reviews and CommentaryEditorialThe Quest to Reduce the Use of Gadolinium-based Contrast Agents: AI May Provide a SolutionManisha Bahl Manisha Bahl Author AffiliationsFrom the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, WAC 240, Boston, MA 02114.Address correspondence to the author (email: [email protected]).Manisha Bahl Published Online:Mar 21 2023https://doi.org/10.1148/radiol.230325MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. Anderson MA, Harrington SG, Kozak BM, Gee MS. Strategies to reduce the use of gadolinium-based contrast agents for abdominal MRI in children. AJR Am J Roentgenol 2020;214(5):1054–1064. Crossref, Medline, Google Scholar2. Bennani-Baiti B, Krug B, Giese D, et al. Evaluation of 3.0-T MRI brain signal after exposure to gadoterate meglumine in women with high breast cancer risk and screening breast MRI. Radiology 2019;293(3):523–530. Link, Google Scholar3. Neal CH. Screening breast MRI and gadolinium deposition: cause for concern? J Breast Imaging 2022;4(1):10–18. Crossref, Google Scholar4. Clauser P, Helbich TH, Kapetas P, et al. Breast lesion detection and characterization with contrast-enhanced magnetic resonance imaging: Prospective randomized intraindividual comparison of gadoterate meglumine (0.15 mmol/kg) and gadobenate dimeglumine (0.075 mmol/kg) at 3T. J Magn Reson Imaging 2019;49(4):1157–1165. Crossref, Medline, Google Scholar5. Müller-Franzes G, Huck L, Arasteh ST, et al. Using machine learning to reduce the need for contrast agents in breast MRI through synthetic images. Radiology 2023;307(3):e222211. Link, Google Scholar6. Phillips H, Soffer S, Klang E. Oncological applications of deep learning generative adversarial networks. JAMA Oncol 2022;8(5):677–678. Crossref, Medline, Google Scholar7. Wang P, Nie P, Dang Y, et al. Synthesizing the first phase of dynamic sequences of breast MRI for enhanced lesion identification. Front Oncol 2021;11:792516. Crossref, Medline, Google Scholar8. Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 2018;48(2):330–340. Crossref, Medline, Google Scholar9. Luo H, Zhang T, Gong NJ, et al. Deep learning-based methods may minimize GBCA dosage in brain MRI. Eur Radiol 2021;31(9):6419–6428. Crossref, Medline, Google Scholar10. Pasumarthi S, Tamir JI, Christensen S, Zaharchuk G, Zhang T, Gong E. A generic deep learning model for reduced gadolinium dose in contrast-enhanced brain MRI. Magn Reson Med 2021;86(3):1687–1700. Crossref, Medline, Google ScholarArticle HistoryReceived: Feb 8 2023Revision requested: Feb 13 2023Revision received: Feb 16 2023Accepted: Feb 17 2023Published online: Mar 21 2023 FiguresReferencesRelatedDetailsAccompanying This ArticleUsing Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic ImagesMar 21 2023RadiologyRecommended Articles Long-term Excretion of Gadolinium-based Contrast Agents: Linear versus Macrocyclic Agents in an Experimental Rat ModelRadiology2018Volume: 290Issue: 2pp. 340-348The Potential of Deep Learning to Revolutionize Current Breast MRI PracticeRadiology2022Volume: 306Issue: 3Delayed Gadolinium-enhanced MR Imaging of Cartilage: A Comparative Analysis of Different Gadolinium-based Contrast Agents in an ex Vivo Porcine ModelRadiology2016Volume: 282Issue: 3pp. 734-742Signal Intensity Changes at MRI Following GBCA Exposure: Incidental Finding or Cause for Concern?Radiology2020Volume: 296Issue: 1pp. 131-133Using Machine Learning to Reduce the Need for Contrast Agents in Breast MRI through Synthetic ImagesRadiology2023Volume: 307Issue: 3See More RSNA Education Exhibits Gadolinium In Pediatric Magnetic Resonance: Indications, Risks And AlternativesDigital Posters2021Breast Density Included in the Modern Rules of Mammographic ScreeningDigital Posters2019Breast Malignancy Subtypes with Hybrid Use of Accelerated and Abbreviated Breast MRI in Screening Higher-Than-Average Risk PatientsDigital Posters2022 RSNA Case Collection Breast lactational changesRSNA Case Collection2022Multifocal breast cancerRSNA Case Collection2020Inflammatory breast cancerRSNA Case Collection2020 Vol. 307, No. 3 Metrics Altmetric Score PDF download" @default.
- W4328049607 created "2023-03-22" @default.
- W4328049607 creator A5032850952 @default.
- W4328049607 date "2023-03-21" @default.
- W4328049607 modified "2023-09-29" @default.
- W4328049607 title "The Quest to Reduce the Use of Gadolinium-based Contrast Agents: AI May Provide a Solution" @default.
- W4328049607 cites W2789565832 @default.
- W4328049607 cites W2904167445 @default.
- W4328049607 cites W2981798593 @default.
- W4328049607 cites W3007026086 @default.
- W4328049607 cites W3137651818 @default.
- W4328049607 cites W3158272520 @default.
- W4328049607 cites W4200010137 @default.
- W4328049607 cites W4200228916 @default.
- W4328049607 cites W4214927643 @default.
- W4328049607 cites W4328048195 @default.
- W4328049607 doi "https://doi.org/10.1148/radiol.230325" @default.
- W4328049607 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36943082" @default.
- W4328049607 hasPublicationYear "2023" @default.
- W4328049607 type Work @default.
- W4328049607 citedByCount "0" @default.
- W4328049607 crossrefType "journal-article" @default.
- W4328049607 hasAuthorship W4328049607A5032850952 @default.
- W4328049607 hasConcept C121608353 @default.
- W4328049607 hasConcept C126322002 @default.
- W4328049607 hasConcept C126838900 @default.
- W4328049607 hasConcept C143409427 @default.
- W4328049607 hasConcept C191897082 @default.
- W4328049607 hasConcept C192562407 @default.
- W4328049607 hasConcept C2777111374 @default.
- W4328049607 hasConcept C2777432617 @default.
- W4328049607 hasConcept C2777843234 @default.
- W4328049607 hasConcept C2780472235 @default.
- W4328049607 hasConcept C2989005 @default.
- W4328049607 hasConcept C530470458 @default.
- W4328049607 hasConcept C557651011 @default.
- W4328049607 hasConcept C71924100 @default.
- W4328049607 hasConceptScore W4328049607C121608353 @default.
- W4328049607 hasConceptScore W4328049607C126322002 @default.
- W4328049607 hasConceptScore W4328049607C126838900 @default.
- W4328049607 hasConceptScore W4328049607C143409427 @default.
- W4328049607 hasConceptScore W4328049607C191897082 @default.
- W4328049607 hasConceptScore W4328049607C192562407 @default.
- W4328049607 hasConceptScore W4328049607C2777111374 @default.
- W4328049607 hasConceptScore W4328049607C2777432617 @default.
- W4328049607 hasConceptScore W4328049607C2777843234 @default.
- W4328049607 hasConceptScore W4328049607C2780472235 @default.
- W4328049607 hasConceptScore W4328049607C2989005 @default.
- W4328049607 hasConceptScore W4328049607C530470458 @default.
- W4328049607 hasConceptScore W4328049607C557651011 @default.
- W4328049607 hasConceptScore W4328049607C71924100 @default.
- W4328049607 hasLocation W43280496071 @default.
- W4328049607 hasLocation W43280496072 @default.
- W4328049607 hasOpenAccess W4328049607 @default.
- W4328049607 hasPrimaryLocation W43280496071 @default.
- W4328049607 hasRelatedWork W2086552434 @default.
- W4328049607 hasRelatedWork W2088324403 @default.
- W4328049607 hasRelatedWork W2094838815 @default.
- W4328049607 hasRelatedWork W2124850242 @default.
- W4328049607 hasRelatedWork W2311419511 @default.
- W4328049607 hasRelatedWork W2318436276 @default.
- W4328049607 hasRelatedWork W2355892046 @default.
- W4328049607 hasRelatedWork W2370777705 @default.
- W4328049607 hasRelatedWork W2467326329 @default.
- W4328049607 hasRelatedWork W2796637449 @default.
- W4328049607 isParatext "false" @default.
- W4328049607 isRetracted "false" @default.
- W4328049607 workType "article" @default.