Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328049655> ?p ?o ?g. }
- W4328049655 endingPage "200" @default.
- W4328049655 startingPage "183" @default.
- W4328049655 abstract "Multi-task learning in deep neural networks has become a topic of growing importance in many research fields, including drug discovery. However, applying multi-task learning poses new challenges in improving prediction performance. This study investigated the potential of training data enrichment to enhance multi-task model prediction quality in drug discovery. The study evaluated four scenarios with varying degrees of information capacity of the training data and applied two types of test data to evaluate prediction performance. We used three datasets: ViralChEMBL, which consisted of binary activities of compounds against viral species, was applied for the classification task; pQSAR(159) and pQSAR(4267), which consisted of bio-activities of compounds and assays from the research of the profile-QSAR method, were applied for regression tasks. We built multi-task models based on the feed-forward DNNs using the PyTorch framework. Our findings showed that training data enrichment could be an effective means of enhancing prediction performance in multi-task learning, but the degree of improvement depends on the quality of the training data. The more unique compounds and targets the training data included, the more new compound-target interactions are required for prediction improvement. Also, we found out that even using multi-task learning, one could not predict the interactions of compounds that are highly dissimilar from those used for model training. The study provides some recommendations for effectively employing multi-task learning in drug discovery to improve prediction accuracy and facilitate the discovery of novel drug candidates." @default.
- W4328049655 created "2023-03-22" @default.
- W4328049655 creator A5014755535 @default.
- W4328049655 creator A5047044275 @default.
- W4328049655 creator A5070076249 @default.
- W4328049655 date "2023-03-21" @default.
- W4328049655 modified "2023-10-16" @default.
- W4328049655 title "Improvement of multi-task learning by data enrichment: application for drug discovery" @default.
- W4328049655 cites W1975875968 @default.
- W4328049655 cites W2009415795 @default.
- W4328049655 cites W2015931265 @default.
- W4328049655 cites W2019678805 @default.
- W4328049655 cites W2041674821 @default.
- W4328049655 cites W2074681440 @default.
- W4328049655 cites W2085890279 @default.
- W4328049655 cites W2092977448 @default.
- W4328049655 cites W2096541451 @default.
- W4328049655 cites W2099071242 @default.
- W4328049655 cites W2179066627 @default.
- W4328049655 cites W2513486311 @default.
- W4328049655 cites W2518838044 @default.
- W4328049655 cites W2610646689 @default.
- W4328049655 cites W2625924525 @default.
- W4328049655 cites W2714724074 @default.
- W4328049655 cites W2740946158 @default.
- W4328049655 cites W2753588101 @default.
- W4328049655 cites W2790808809 @default.
- W4328049655 cites W2809395091 @default.
- W4328049655 cites W2903198840 @default.
- W4328049655 cites W2907473220 @default.
- W4328049655 cites W2913076747 @default.
- W4328049655 cites W2914165019 @default.
- W4328049655 cites W2972499938 @default.
- W4328049655 cites W2995345309 @default.
- W4328049655 cites W3036553057 @default.
- W4328049655 cites W3046470356 @default.
- W4328049655 cites W3099878876 @default.
- W4328049655 cites W3127521151 @default.
- W4328049655 cites W3130848728 @default.
- W4328049655 cites W3131220620 @default.
- W4328049655 cites W3161669023 @default.
- W4328049655 cites W3182706339 @default.
- W4328049655 cites W3216672338 @default.
- W4328049655 cites W4220924743 @default.
- W4328049655 cites W4224279656 @default.
- W4328049655 cites W4244209983 @default.
- W4328049655 cites W4295312788 @default.
- W4328049655 doi "https://doi.org/10.1007/s10822-023-00500-w" @default.
- W4328049655 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36943645" @default.
- W4328049655 hasPublicationYear "2023" @default.
- W4328049655 type Work @default.
- W4328049655 citedByCount "1" @default.
- W4328049655 crossrefType "journal-article" @default.
- W4328049655 hasAuthorship W4328049655A5014755535 @default.
- W4328049655 hasAuthorship W4328049655A5047044275 @default.
- W4328049655 hasAuthorship W4328049655A5070076249 @default.
- W4328049655 hasBestOaLocation W43280496552 @default.
- W4328049655 hasConcept C108583219 @default.
- W4328049655 hasConcept C119857082 @default.
- W4328049655 hasConcept C12267149 @default.
- W4328049655 hasConcept C124101348 @default.
- W4328049655 hasConcept C127413603 @default.
- W4328049655 hasConcept C154945302 @default.
- W4328049655 hasConcept C201995342 @default.
- W4328049655 hasConcept C2780451532 @default.
- W4328049655 hasConcept C28006648 @default.
- W4328049655 hasConcept C41008148 @default.
- W4328049655 hasConcept C50644808 @default.
- W4328049655 hasConcept C51632099 @default.
- W4328049655 hasConcept C60644358 @default.
- W4328049655 hasConcept C66905080 @default.
- W4328049655 hasConcept C74187038 @default.
- W4328049655 hasConcept C86803240 @default.
- W4328049655 hasConceptScore W4328049655C108583219 @default.
- W4328049655 hasConceptScore W4328049655C119857082 @default.
- W4328049655 hasConceptScore W4328049655C12267149 @default.
- W4328049655 hasConceptScore W4328049655C124101348 @default.
- W4328049655 hasConceptScore W4328049655C127413603 @default.
- W4328049655 hasConceptScore W4328049655C154945302 @default.
- W4328049655 hasConceptScore W4328049655C201995342 @default.
- W4328049655 hasConceptScore W4328049655C2780451532 @default.
- W4328049655 hasConceptScore W4328049655C28006648 @default.
- W4328049655 hasConceptScore W4328049655C41008148 @default.
- W4328049655 hasConceptScore W4328049655C50644808 @default.
- W4328049655 hasConceptScore W4328049655C51632099 @default.
- W4328049655 hasConceptScore W4328049655C60644358 @default.
- W4328049655 hasConceptScore W4328049655C66905080 @default.
- W4328049655 hasConceptScore W4328049655C74187038 @default.
- W4328049655 hasConceptScore W4328049655C86803240 @default.
- W4328049655 hasFunder F4320321079 @default.
- W4328049655 hasIssue "4" @default.
- W4328049655 hasLocation W43280496551 @default.
- W4328049655 hasLocation W43280496552 @default.
- W4328049655 hasLocation W43280496553 @default.
- W4328049655 hasOpenAccess W4328049655 @default.
- W4328049655 hasPrimaryLocation W43280496551 @default.
- W4328049655 hasRelatedWork W13451536 @default.
- W4328049655 hasRelatedWork W2611989081 @default.