Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328049863> ?p ?o ?g. }
- W4328049863 endingPage "1881" @default.
- W4328049863 startingPage "1872" @default.
- W4328049863 abstract "Force field-based models are a Newtonian mechanics approximation of reality and are inherently noisy. Coupling models from different molecular scale domains (including single, gas-phase molecules up to multimolecule, condensed phase ensembles) is difficult, which is also the case for finding solutions that transfer well between the scales. In this contribution, we introduce a surrogate-assisted algorithm to optimize Lennard-Jones parameters for target data from different scale domains to overcome the difficulties named above. Specifically, our approach combines a surrogate-assisted global evolutionary optimization method with a presampling phase that takes advantage of one scale domain being less computationally expensive to evaluate. The algorithm’s components were evaluated individually, elucidating their individual merits. Our findings show that the process of parametrizing force fields can significantly benefit from both the presampling method, which alleviates the need to have a good initial guess for the parameters, and the surrogate model, which improves efficiency." @default.
- W4328049863 created "2023-03-22" @default.
- W4328049863 creator A5000728064 @default.
- W4328049863 creator A5009068491 @default.
- W4328049863 creator A5017534690 @default.
- W4328049863 creator A5024385686 @default.
- W4328049863 creator A5032491527 @default.
- W4328049863 creator A5091020946 @default.
- W4328049863 creator A5091849960 @default.
- W4328049863 date "2023-03-21" @default.
- W4328049863 modified "2023-10-18" @default.
- W4328049863 title "Determining Lennard-Jones Parameters Using Multiscale Target Data through Presampling-Enhanced, Surrogate-Assisted Global Optimization" @default.
- W4328049863 cites W1529817821 @default.
- W4328049863 cites W1917827718 @default.
- W4328049863 cites W1967737979 @default.
- W4328049863 cites W1968779717 @default.
- W4328049863 cites W1981360001 @default.
- W4328049863 cites W1992867080 @default.
- W4328049863 cites W2000359198 @default.
- W4328049863 cites W2009026202 @default.
- W4328049863 cites W2011174137 @default.
- W4328049863 cites W2035515922 @default.
- W4328049863 cites W2039588355 @default.
- W4328049863 cites W2051381895 @default.
- W4328049863 cites W2070753604 @default.
- W4328049863 cites W2073291724 @default.
- W4328049863 cites W2080240101 @default.
- W4328049863 cites W2094866743 @default.
- W4328049863 cites W2112036188 @default.
- W4328049863 cites W2147993766 @default.
- W4328049863 cites W2150789776 @default.
- W4328049863 cites W2159135005 @default.
- W4328049863 cites W2171993497 @default.
- W4328049863 cites W2192203593 @default.
- W4328049863 cites W2291356055 @default.
- W4328049863 cites W2325996472 @default.
- W4328049863 cites W2332365892 @default.
- W4328049863 cites W2565887337 @default.
- W4328049863 cites W2738289555 @default.
- W4328049863 cites W2804082136 @default.
- W4328049863 cites W2898021236 @default.
- W4328049863 cites W2912250403 @default.
- W4328049863 cites W3025834810 @default.
- W4328049863 cites W3043159782 @default.
- W4328049863 cites W3109230444 @default.
- W4328049863 cites W4205508441 @default.
- W4328049863 cites W4229977739 @default.
- W4328049863 cites W4243645092 @default.
- W4328049863 doi "https://doi.org/10.1021/acs.jcim.2c01231" @default.
- W4328049863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36942658" @default.
- W4328049863 hasPublicationYear "2023" @default.
- W4328049863 type Work @default.
- W4328049863 citedByCount "1" @default.
- W4328049863 countsByYear W43280498632023 @default.
- W4328049863 crossrefType "journal-article" @default.
- W4328049863 hasAuthorship W4328049863A5000728064 @default.
- W4328049863 hasAuthorship W4328049863A5009068491 @default.
- W4328049863 hasAuthorship W4328049863A5017534690 @default.
- W4328049863 hasAuthorship W4328049863A5024385686 @default.
- W4328049863 hasAuthorship W4328049863A5032491527 @default.
- W4328049863 hasAuthorship W4328049863A5091020946 @default.
- W4328049863 hasAuthorship W4328049863A5091849960 @default.
- W4328049863 hasConcept C10803110 @default.
- W4328049863 hasConcept C111919701 @default.
- W4328049863 hasConcept C119857082 @default.
- W4328049863 hasConcept C121332964 @default.
- W4328049863 hasConcept C121864883 @default.
- W4328049863 hasConcept C131675550 @default.
- W4328049863 hasConcept C142806159 @default.
- W4328049863 hasConcept C154945302 @default.
- W4328049863 hasConcept C158622935 @default.
- W4328049863 hasConcept C202444582 @default.
- W4328049863 hasConcept C2778755073 @default.
- W4328049863 hasConcept C33923547 @default.
- W4328049863 hasConcept C41008148 @default.
- W4328049863 hasConcept C44280652 @default.
- W4328049863 hasConcept C62520636 @default.
- W4328049863 hasConcept C9652623 @default.
- W4328049863 hasConcept C98045186 @default.
- W4328049863 hasConceptScore W4328049863C10803110 @default.
- W4328049863 hasConceptScore W4328049863C111919701 @default.
- W4328049863 hasConceptScore W4328049863C119857082 @default.
- W4328049863 hasConceptScore W4328049863C121332964 @default.
- W4328049863 hasConceptScore W4328049863C121864883 @default.
- W4328049863 hasConceptScore W4328049863C131675550 @default.
- W4328049863 hasConceptScore W4328049863C142806159 @default.
- W4328049863 hasConceptScore W4328049863C154945302 @default.
- W4328049863 hasConceptScore W4328049863C158622935 @default.
- W4328049863 hasConceptScore W4328049863C202444582 @default.
- W4328049863 hasConceptScore W4328049863C2778755073 @default.
- W4328049863 hasConceptScore W4328049863C33923547 @default.
- W4328049863 hasConceptScore W4328049863C41008148 @default.
- W4328049863 hasConceptScore W4328049863C44280652 @default.
- W4328049863 hasConceptScore W4328049863C62520636 @default.
- W4328049863 hasConceptScore W4328049863C9652623 @default.
- W4328049863 hasConceptScore W4328049863C98045186 @default.
- W4328049863 hasIssue "7" @default.
- W4328049863 hasLocation W43280498631 @default.