Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328050979> ?p ?o ?g. }
- W4328050979 endingPage "311" @default.
- W4328050979 startingPage "295" @default.
- W4328050979 abstract "Abstract Integrated GPS/INS using Kalman filter is the best technique for improving navigation accuracy. Assuming that the covariance matrices are known and constant, a conventional Kalman filter (CKF) is usually used, however, when they are unknown and time-varying, several adaptive estimation approaches have to be developed to estimate the statistical information of the measurement ( R ), process ( Q ), and state ( P ) covariance matrices. In many situations, blunders/faults in the measurement model and/or sudden changes in the dynamic model may occur during the navigation period. Therefore, the CKF, as well as the adaptive Kalman filter (AKF) will exhibit abnormal behavior and may lead the filter to be suboptimal or even diverge. In this study, the Sage-Husa adaptive Kalman filter (SHAKF) and innovation-based adaptive Kalman filter (IAKF) approaches are employed for adapting the measurement covariance matrix( R ). In the case of abrupt changes in the dynamic model, the state covariance matrix ( P ) is adapted using the strong tracking filter (STF). The performance of these adaptive approaches is evaluated before and after simulating a fault of different sizes in the measurement and dynamic models. The results show that with a large window width, the SHAKF outperforms the CKF and IAKF. However, when the system encounters any fault either in the measurement or dynamic model, the SHAKF loses its optimality and diverges. The sensitivity of the SHAKF to the fault is because the R matrix accumulates with the propagation of the recursive noise estimator. On the other hand, the IAKF and STF provide better performance than both the CKF and SHAKF because the gain matrix is adaptively adjusted to mitigate the influence of the fault, and therefore, they behave normally when a fault of any size occurs in the measurement and/or dynamic model." @default.
- W4328050979 created "2023-03-22" @default.
- W4328050979 creator A5001384681 @default.
- W4328050979 creator A5070426242 @default.
- W4328050979 creator A5087105076 @default.
- W4328050979 date "2023-03-21" @default.
- W4328050979 modified "2023-09-23" @default.
- W4328050979 title "An integrated adaptive Kalman filter for improving the reliability of navigation systems" @default.
- W4328050979 cites W1988442665 @default.
- W4328050979 cites W1996567593 @default.
- W4328050979 cites W2026702887 @default.
- W4328050979 cites W2031775116 @default.
- W4328050979 cites W2048312361 @default.
- W4328050979 cites W2049889081 @default.
- W4328050979 cites W2095376999 @default.
- W4328050979 cites W2111760637 @default.
- W4328050979 cites W2122246449 @default.
- W4328050979 cites W2143030612 @default.
- W4328050979 cites W2143384455 @default.
- W4328050979 cites W2145834063 @default.
- W4328050979 cites W2156170806 @default.
- W4328050979 cites W2167536191 @default.
- W4328050979 cites W2330146556 @default.
- W4328050979 cites W2587647538 @default.
- W4328050979 cites W2807716280 @default.
- W4328050979 cites W2809624837 @default.
- W4328050979 cites W2944295418 @default.
- W4328050979 cites W2949988631 @default.
- W4328050979 cites W2953379476 @default.
- W4328050979 cites W2969495885 @default.
- W4328050979 cites W2990798733 @default.
- W4328050979 cites W3001529749 @default.
- W4328050979 cites W3041059664 @default.
- W4328050979 cites W2071518995 @default.
- W4328050979 doi "https://doi.org/10.1515/jag-2022-0048" @default.
- W4328050979 hasPublicationYear "2023" @default.
- W4328050979 type Work @default.
- W4328050979 citedByCount "0" @default.
- W4328050979 crossrefType "journal-article" @default.
- W4328050979 hasAuthorship W4328050979A5001384681 @default.
- W4328050979 hasAuthorship W4328050979A5070426242 @default.
- W4328050979 hasAuthorship W4328050979A5087105076 @default.
- W4328050979 hasConcept C102248274 @default.
- W4328050979 hasConcept C105795698 @default.
- W4328050979 hasConcept C106131492 @default.
- W4328050979 hasConcept C11413529 @default.
- W4328050979 hasConcept C11588082 @default.
- W4328050979 hasConcept C150679823 @default.
- W4328050979 hasConcept C154945302 @default.
- W4328050979 hasConcept C157286648 @default.
- W4328050979 hasConcept C178650346 @default.
- W4328050979 hasConcept C185142706 @default.
- W4328050979 hasConcept C185429906 @default.
- W4328050979 hasConcept C206833254 @default.
- W4328050979 hasConcept C2775924081 @default.
- W4328050979 hasConcept C31972630 @default.
- W4328050979 hasConcept C33923547 @default.
- W4328050979 hasConcept C41008148 @default.
- W4328050979 hasConcept C47446073 @default.
- W4328050979 hasConcept C50050547 @default.
- W4328050979 hasConcept C79334102 @default.
- W4328050979 hasConcept C83042196 @default.
- W4328050979 hasConcept C8639503 @default.
- W4328050979 hasConceptScore W4328050979C102248274 @default.
- W4328050979 hasConceptScore W4328050979C105795698 @default.
- W4328050979 hasConceptScore W4328050979C106131492 @default.
- W4328050979 hasConceptScore W4328050979C11413529 @default.
- W4328050979 hasConceptScore W4328050979C11588082 @default.
- W4328050979 hasConceptScore W4328050979C150679823 @default.
- W4328050979 hasConceptScore W4328050979C154945302 @default.
- W4328050979 hasConceptScore W4328050979C157286648 @default.
- W4328050979 hasConceptScore W4328050979C178650346 @default.
- W4328050979 hasConceptScore W4328050979C185142706 @default.
- W4328050979 hasConceptScore W4328050979C185429906 @default.
- W4328050979 hasConceptScore W4328050979C206833254 @default.
- W4328050979 hasConceptScore W4328050979C2775924081 @default.
- W4328050979 hasConceptScore W4328050979C31972630 @default.
- W4328050979 hasConceptScore W4328050979C33923547 @default.
- W4328050979 hasConceptScore W4328050979C41008148 @default.
- W4328050979 hasConceptScore W4328050979C47446073 @default.
- W4328050979 hasConceptScore W4328050979C50050547 @default.
- W4328050979 hasConceptScore W4328050979C79334102 @default.
- W4328050979 hasConceptScore W4328050979C83042196 @default.
- W4328050979 hasConceptScore W4328050979C8639503 @default.
- W4328050979 hasFunder F4320323855 @default.
- W4328050979 hasIssue "3" @default.
- W4328050979 hasLocation W43280509791 @default.
- W4328050979 hasOpenAccess W4328050979 @default.
- W4328050979 hasPrimaryLocation W43280509791 @default.
- W4328050979 hasRelatedWork W1035502194 @default.
- W4328050979 hasRelatedWork W1578403661 @default.
- W4328050979 hasRelatedWork W2355811898 @default.
- W4328050979 hasRelatedWork W2380516352 @default.
- W4328050979 hasRelatedWork W2381122829 @default.
- W4328050979 hasRelatedWork W2487673080 @default.
- W4328050979 hasRelatedWork W4242707909 @default.
- W4328050979 hasRelatedWork W4246357351 @default.
- W4328050979 hasRelatedWork W4302337189 @default.