Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328051105> ?p ?o ?g. }
- W4328051105 endingPage "107067" @default.
- W4328051105 startingPage "107067" @default.
- W4328051105 abstract "Understanding how reservoir sedimentation rates may evolve due to climate change is essential for projecting future changes in reservoir water storage capacity. The Revised Universal Soil Loss Equation (RUSLE) is commonly used to assess regional soil loss rates because of its suitability for working with the coarse temporal and spatial scale of climate model outputs. Application of the RUSLE for projecting future erosion rates is constrained by the relatively limited number of classes used in projected changes of native vegetation: this typically reduces a wide range of variation in RUSLE cover (C) factors to a single value per class, and these classes may be insensitive to changes in species composition and canopy density with time and space. This paper develops a low-cost, efficient, and objective approach to projecting future C values directly based on widely available Landsat data, downscaled climate model data, and a limited number of terrain variables. Observed C is estimated from Landsat-derived Normalized Difference Vegetation Index (NDVI) and Modified Soil-Adjusted Vegetation Index (MSAVI) values using standard methods. A linear relationship is established between the observed C values and average annual antecedent temperature, average annual antecedent precipitation, latitude, and percent sand (adjusted R2 = 0.75604, 0.7543, and RMSE = 0.09448, 0.07043, respectively). A proof of principal study demonstrates that, unlike when land cover classes are used to estimates C, a RUSLE model driven by the regression-based C provides a correct order-of-magnitude estimate of observed long-term erosion and sediment yield rates (e.g., an estimate of 2.9–3.2 t ha−1 y-1 is obtained where observed rates range from 1.2 to 3.9 t ha−1 y-1 for the same time period, and up to 8 t ha−1 y-1 historically, while standard formulations of RUSLE yield 16.1 and 0.3 t ha−1 y-1). Using climate model data to estimate both precipitation intensity (R factor) and C in the RUSLE model results in basin wide projected end 21st century soil erosion rates for relative concentration pathway 8.5 of 5.5–7.5 t ha−1 y-1, consistent with expectations for accelerated soil loss in the study area as climate change reduces soil moisture while increasing precipitation intensity. The same model driven by land cover class estimates of C produces soil loss rates an order of magnitude smaller (0.3–0.4 t ha−1 y-1), consistent with a much more heavily vegetated landscape than could be supported under the increasingly arid projected climate." @default.
- W4328051105 created "2023-03-22" @default.
- W4328051105 creator A5058113163 @default.
- W4328051105 creator A5066793447 @default.
- W4328051105 date "2023-06-01" @default.
- W4328051105 modified "2023-10-06" @default.
- W4328051105 title "A new method for calculating C factor when projecting future soil loss using the Revised Universal soil loss equation (RUSLE) in semi-arid environments" @default.
- W4328051105 cites W1177178234 @default.
- W4328051105 cites W1483105054 @default.
- W4328051105 cites W1508433467 @default.
- W4328051105 cites W1524017779 @default.
- W4328051105 cites W1759831170 @default.
- W4328051105 cites W1950629566 @default.
- W4328051105 cites W1969483029 @default.
- W4328051105 cites W1970010064 @default.
- W4328051105 cites W1980535663 @default.
- W4328051105 cites W1981563751 @default.
- W4328051105 cites W1992037397 @default.
- W4328051105 cites W1998340770 @default.
- W4328051105 cites W2000102737 @default.
- W4328051105 cites W2002115844 @default.
- W4328051105 cites W2005230532 @default.
- W4328051105 cites W2010022794 @default.
- W4328051105 cites W2013954727 @default.
- W4328051105 cites W2016005359 @default.
- W4328051105 cites W2026592701 @default.
- W4328051105 cites W2028855984 @default.
- W4328051105 cites W2028995354 @default.
- W4328051105 cites W2031793692 @default.
- W4328051105 cites W2049517593 @default.
- W4328051105 cites W2052199339 @default.
- W4328051105 cites W2052740065 @default.
- W4328051105 cites W2061058186 @default.
- W4328051105 cites W2079212215 @default.
- W4328051105 cites W2081946219 @default.
- W4328051105 cites W2086848419 @default.
- W4328051105 cites W2098434911 @default.
- W4328051105 cites W2100258932 @default.
- W4328051105 cites W2104153798 @default.
- W4328051105 cites W2116909991 @default.
- W4328051105 cites W2132543588 @default.
- W4328051105 cites W2134136604 @default.
- W4328051105 cites W2143155555 @default.
- W4328051105 cites W2152455566 @default.
- W4328051105 cites W2152473149 @default.
- W4328051105 cites W2168612292 @default.
- W4328051105 cites W2287935773 @default.
- W4328051105 cites W2537920932 @default.
- W4328051105 cites W2566591070 @default.
- W4328051105 cites W2571205367 @default.
- W4328051105 cites W2772366318 @default.
- W4328051105 cites W2905741328 @default.
- W4328051105 cites W2924487763 @default.
- W4328051105 cites W2996115036 @default.
- W4328051105 cites W3035763137 @default.
- W4328051105 cites W3081374149 @default.
- W4328051105 cites W3097812669 @default.
- W4328051105 cites W3141197532 @default.
- W4328051105 cites W3152187894 @default.
- W4328051105 cites W4244566850 @default.
- W4328051105 doi "https://doi.org/10.1016/j.catena.2023.107067" @default.
- W4328051105 hasPublicationYear "2023" @default.
- W4328051105 type Work @default.
- W4328051105 citedByCount "4" @default.
- W4328051105 countsByYear W43280511052023 @default.
- W4328051105 crossrefType "journal-article" @default.
- W4328051105 hasAuthorship W4328051105A5058113163 @default.
- W4328051105 hasAuthorship W4328051105A5066793447 @default.
- W4328051105 hasConcept C107054158 @default.
- W4328051105 hasConcept C123157820 @default.
- W4328051105 hasConcept C127313418 @default.
- W4328051105 hasConcept C132651083 @default.
- W4328051105 hasConcept C142724271 @default.
- W4328051105 hasConcept C150772632 @default.
- W4328051105 hasConcept C151730666 @default.
- W4328051105 hasConcept C153294291 @default.
- W4328051105 hasConcept C1549246 @default.
- W4328051105 hasConcept C159390177 @default.
- W4328051105 hasConcept C187320778 @default.
- W4328051105 hasConcept C18903297 @default.
- W4328051105 hasConcept C205649164 @default.
- W4328051105 hasConcept C2776133958 @default.
- W4328051105 hasConcept C2777610965 @default.
- W4328051105 hasConcept C2983671832 @default.
- W4328051105 hasConcept C39432304 @default.
- W4328051105 hasConcept C71924100 @default.
- W4328051105 hasConcept C76886044 @default.
- W4328051105 hasConcept C86803240 @default.
- W4328051105 hasConceptScore W4328051105C107054158 @default.
- W4328051105 hasConceptScore W4328051105C123157820 @default.
- W4328051105 hasConceptScore W4328051105C127313418 @default.
- W4328051105 hasConceptScore W4328051105C132651083 @default.
- W4328051105 hasConceptScore W4328051105C142724271 @default.
- W4328051105 hasConceptScore W4328051105C150772632 @default.
- W4328051105 hasConceptScore W4328051105C151730666 @default.
- W4328051105 hasConceptScore W4328051105C153294291 @default.
- W4328051105 hasConceptScore W4328051105C1549246 @default.
- W4328051105 hasConceptScore W4328051105C159390177 @default.