Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328052008> ?p ?o ?g. }
- W4328052008 endingPage "A6" @default.
- W4328052008 startingPage "A6" @default.
- W4328052008 abstract "Context. The dissipation of tidal inertial waves in planetary and stellar convective regions is one of the key mechanisms that drive the evolution of star–planet and planet–moon systems. This dissipation is particularly efficient for young low-mass stars and gaseous giant planets, which are rapid rotators. In this context, the interaction between tidal inertial waves and turbulent convective flows must be modelled in a realistic and robust way. In the state-of-the-art simulations, the friction applied by convection on tidal waves is commonly modeled as an effective eddy viscosity. This approach may be valid when the characteristic length scales of convective eddies are smaller than those of the tidal waves. However, it becomes highly questionable in the case where tidal waves interact with potentially stable large-scale vortices such as those observed at the poles of Jupiter and Saturn. The large-scale vortices are potentially triggered by convection in rapidly-rotating bodies in which the Coriolis acceleration forms the flow in columnar vortical structures along the direction of the rotation axis. Aims. We investigate the complex interactions between a tidal inertial wave and a columnar convective vortex. Methods. We used a quasi-geostrophic semi-analytical model of a convective columnar vortex, which is validated by numerical simulations. First, we carried out linear stability analysis using both numerical and asymptotic Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) methods. We then conducted linear numerical simulations of the interactions between a convective columnar vortex and an incoming tidal inertial wave. Results. The vortex we consider is found to be centrifugally stable in the range –Ω p ≤ Ω 0 ≤ 3.62Ω p and unstable outside this range, where Ω 0 is the local rotation rate of the vortex at its center and Ω p is the global planetary (stellar) rotation rate. From the linear stability analysis, we find that this vortex is prone to centrifugal instability with perturbations with azimuthal wavenumbers m = {0,1, 2}, which potentially correspond to eccentricity, obliquity, and asynchronous tides, respectively. The modes with m > 2 are found to be neutral or stable. The WKBJ analysis provides analytic expressions of the dispersion relations for neutral and unstable modes when the axial (vertical) wavenumber is sufficiently large. We verify that in the unstable regime, an incoming tidal inertial wave triggers the growth of the most unstable mode of the vortex. This would lead to turbulent dissipation. For stable convective columns, the wave-vortex interaction leads to the mixing of momentum for tidal inertial waves while it creates a low-velocity region around the vortex core and a new wave-like perturbation in the form of a progressive wave radiating in the far field. The emission of this secondary wave is the strongest when the wavelength of the incoming wave is close to the characteristic size (radius) of the vortex. Incoming tidal waves can also experience complex angular momentum exchanges locally at critical layers of stable vortices. Conclusions. The interaction between tidal inertial waves and large-scale coherent convective vortices in rapidly-rotating planets (stars) leads to turbulent dissipation in the unstable regime and complex behaviors such as mixing of momentum and radiation of new waves in the far field or wave-vortex angular momentum exchanges in the stable regime. These phenomena cannot be modeled using a simple effective eddy viscosity." @default.
- W4328052008 created "2023-03-22" @default.
- W4328052008 creator A5033115920 @default.
- W4328052008 creator A5048701739 @default.
- W4328052008 creator A5056314174 @default.
- W4328052008 creator A5082696218 @default.
- W4328052008 creator A5085007882 @default.
- W4328052008 date "2023-04-26" @default.
- W4328052008 modified "2023-10-14" @default.
- W4328052008 title "How tidal waves interact with convective vortices in rapidly rotating planets and stars" @default.
- W4328052008 cites W1598297885 @default.
- W4328052008 cites W1749947268 @default.
- W4328052008 cites W1900846808 @default.
- W4328052008 cites W1965872118 @default.
- W4328052008 cites W1968803121 @default.
- W4328052008 cites W1976734461 @default.
- W4328052008 cites W1985990214 @default.
- W4328052008 cites W1987263772 @default.
- W4328052008 cites W1988497189 @default.
- W4328052008 cites W1988551027 @default.
- W4328052008 cites W1990025000 @default.
- W4328052008 cites W1990218024 @default.
- W4328052008 cites W1994877509 @default.
- W4328052008 cites W2004731089 @default.
- W4328052008 cites W2014217939 @default.
- W4328052008 cites W2015908274 @default.
- W4328052008 cites W2016206105 @default.
- W4328052008 cites W2018291081 @default.
- W4328052008 cites W2018571291 @default.
- W4328052008 cites W2021110939 @default.
- W4328052008 cites W2024621107 @default.
- W4328052008 cites W2030598336 @default.
- W4328052008 cites W2034827721 @default.
- W4328052008 cites W2036475476 @default.
- W4328052008 cites W2038195504 @default.
- W4328052008 cites W2040882751 @default.
- W4328052008 cites W2052076584 @default.
- W4328052008 cites W2052663370 @default.
- W4328052008 cites W2060005996 @default.
- W4328052008 cites W2061410568 @default.
- W4328052008 cites W2061712184 @default.
- W4328052008 cites W2062520966 @default.
- W4328052008 cites W2065261669 @default.
- W4328052008 cites W2065964773 @default.
- W4328052008 cites W2075317111 @default.
- W4328052008 cites W2079851755 @default.
- W4328052008 cites W2085359552 @default.
- W4328052008 cites W2090835797 @default.
- W4328052008 cites W2092805630 @default.
- W4328052008 cites W2093989665 @default.
- W4328052008 cites W2094911815 @default.
- W4328052008 cites W2107737956 @default.
- W4328052008 cites W2125574420 @default.
- W4328052008 cites W2128237884 @default.
- W4328052008 cites W2132595229 @default.
- W4328052008 cites W2133098570 @default.
- W4328052008 cites W2145282715 @default.
- W4328052008 cites W2161872442 @default.
- W4328052008 cites W2297421027 @default.
- W4328052008 cites W2326675820 @default.
- W4328052008 cites W2335102573 @default.
- W4328052008 cites W2532144385 @default.
- W4328052008 cites W2618423362 @default.
- W4328052008 cites W2765950036 @default.
- W4328052008 cites W2794194779 @default.
- W4328052008 cites W2950291157 @default.
- W4328052008 cites W2976032781 @default.
- W4328052008 cites W2994869919 @default.
- W4328052008 cites W3005125798 @default.
- W4328052008 cites W3005279788 @default.
- W4328052008 cites W3038023958 @default.
- W4328052008 cites W3044016233 @default.
- W4328052008 cites W3044526418 @default.
- W4328052008 cites W3046724907 @default.
- W4328052008 cites W3047759777 @default.
- W4328052008 cites W3087961276 @default.
- W4328052008 cites W3099001209 @default.
- W4328052008 cites W3099130212 @default.
- W4328052008 cites W3099612338 @default.
- W4328052008 cites W3099870829 @default.
- W4328052008 cites W3100400554 @default.
- W4328052008 cites W3100566972 @default.
- W4328052008 cites W3100663594 @default.
- W4328052008 cites W3101289105 @default.
- W4328052008 cites W3101348947 @default.
- W4328052008 cites W3101389760 @default.
- W4328052008 cites W3102102590 @default.
- W4328052008 cites W3102441821 @default.
- W4328052008 cites W3102721216 @default.
- W4328052008 cites W3103261679 @default.
- W4328052008 cites W3103698629 @default.
- W4328052008 cites W3104230472 @default.
- W4328052008 cites W3105110456 @default.
- W4328052008 cites W3105276765 @default.
- W4328052008 cites W3106240999 @default.
- W4328052008 cites W3112942506 @default.
- W4328052008 cites W3121909692 @default.
- W4328052008 cites W3123344725 @default.