Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328088892> ?p ?o ?g. }
- W4328088892 endingPage "101337" @default.
- W4328088892 startingPage "101337" @default.
- W4328088892 abstract "High-entropy alloys (HEAs) are a new class of metallic materials that demonstrate potentially very useful functional and structural properties. Sluggish diffusion, one of the core effects responsible for their exotic properties, has been intensively debated. Here, we demonstrate that a combination of machine learning (ML) and kinetic Monte Carlo (kMC) can uncover the complicated links between the rough potential energy landscape (PEL) and atomic transport in HEAs. The ML model accurately represents the local environment dependence of PEL, and the developed ML-kMC allows us to reach the timescale required to reveal how composition-dependent PEL governs self-diffusion in HEAs. We further delineate a species-resolved analytical diffusion model that can capture essential features of self-diffusion in arbitrary alloy composition and temperature in HEAs. This work elucidates the governing mechanism for sluggish diffusion in HEAs, which enables efficient and accurate manipulation of diffusion properties in HEAs by tailoring alloy composition and corresponding PEL." @default.
- W4328088892 created "2023-03-22" @default.
- W4328088892 creator A5040790581 @default.
- W4328088892 creator A5049863014 @default.
- W4328088892 creator A5057249366 @default.
- W4328088892 creator A5063564807 @default.
- W4328088892 creator A5069513550 @default.
- W4328088892 creator A5071672663 @default.
- W4328088892 date "2023-04-01" @default.
- W4328088892 modified "2023-10-15" @default.
- W4328088892 title "Mechanism of sluggish diffusion under rough energy landscape" @default.
- W4328088892 cites W1847775660 @default.
- W4328088892 cites W1968771657 @default.
- W4328088892 cites W1968985108 @default.
- W4328088892 cites W1970065157 @default.
- W4328088892 cites W1979863594 @default.
- W4328088892 cites W2003975937 @default.
- W4328088892 cites W2007535179 @default.
- W4328088892 cites W2019465613 @default.
- W4328088892 cites W2020766699 @default.
- W4328088892 cites W2031175305 @default.
- W4328088892 cites W2032570465 @default.
- W4328088892 cites W2037654616 @default.
- W4328088892 cites W2038583983 @default.
- W4328088892 cites W2043111910 @default.
- W4328088892 cites W2058085399 @default.
- W4328088892 cites W2078531111 @default.
- W4328088892 cites W2122427541 @default.
- W4328088892 cites W2262110310 @default.
- W4328088892 cites W2292027298 @default.
- W4328088892 cites W2331749703 @default.
- W4328088892 cites W2335110263 @default.
- W4328088892 cites W2440657949 @default.
- W4328088892 cites W2494267578 @default.
- W4328088892 cites W2494503302 @default.
- W4328088892 cites W2534691303 @default.
- W4328088892 cites W2588420642 @default.
- W4328088892 cites W2728105629 @default.
- W4328088892 cites W2748869433 @default.
- W4328088892 cites W2765497866 @default.
- W4328088892 cites W2782516741 @default.
- W4328088892 cites W2782803471 @default.
- W4328088892 cites W2803219032 @default.
- W4328088892 cites W2906524957 @default.
- W4328088892 cites W2951539866 @default.
- W4328088892 cites W3019329693 @default.
- W4328088892 cites W3026236485 @default.
- W4328088892 cites W3037149353 @default.
- W4328088892 cites W3099424836 @default.
- W4328088892 cites W3101026111 @default.
- W4328088892 cites W3203183117 @default.
- W4328088892 cites W3209871906 @default.
- W4328088892 cites W4281249669 @default.
- W4328088892 cites W4303183393 @default.
- W4328088892 doi "https://doi.org/10.1016/j.xcrp.2023.101337" @default.
- W4328088892 hasPublicationYear "2023" @default.
- W4328088892 type Work @default.
- W4328088892 citedByCount "0" @default.
- W4328088892 crossrefType "journal-article" @default.
- W4328088892 hasAuthorship W4328088892A5040790581 @default.
- W4328088892 hasAuthorship W4328088892A5049863014 @default.
- W4328088892 hasAuthorship W4328088892A5057249366 @default.
- W4328088892 hasAuthorship W4328088892A5063564807 @default.
- W4328088892 hasAuthorship W4328088892A5069513550 @default.
- W4328088892 hasAuthorship W4328088892A5071672663 @default.
- W4328088892 hasBestOaLocation W43280888921 @default.
- W4328088892 hasConcept C105795698 @default.
- W4328088892 hasConcept C119621388 @default.
- W4328088892 hasConcept C121332964 @default.
- W4328088892 hasConcept C121864883 @default.
- W4328088892 hasConcept C135889238 @default.
- W4328088892 hasConcept C159467904 @default.
- W4328088892 hasConcept C171250308 @default.
- W4328088892 hasConcept C185592680 @default.
- W4328088892 hasConcept C18762648 @default.
- W4328088892 hasConcept C191897082 @default.
- W4328088892 hasConcept C192562407 @default.
- W4328088892 hasConcept C19499675 @default.
- W4328088892 hasConcept C2780026712 @default.
- W4328088892 hasConcept C2780299837 @default.
- W4328088892 hasConcept C33923547 @default.
- W4328088892 hasConcept C45786274 @default.
- W4328088892 hasConcept C62520636 @default.
- W4328088892 hasConcept C69357855 @default.
- W4328088892 hasConcept C89611455 @default.
- W4328088892 hasConcept C97355855 @default.
- W4328088892 hasConceptScore W4328088892C105795698 @default.
- W4328088892 hasConceptScore W4328088892C119621388 @default.
- W4328088892 hasConceptScore W4328088892C121332964 @default.
- W4328088892 hasConceptScore W4328088892C121864883 @default.
- W4328088892 hasConceptScore W4328088892C135889238 @default.
- W4328088892 hasConceptScore W4328088892C159467904 @default.
- W4328088892 hasConceptScore W4328088892C171250308 @default.
- W4328088892 hasConceptScore W4328088892C185592680 @default.
- W4328088892 hasConceptScore W4328088892C18762648 @default.
- W4328088892 hasConceptScore W4328088892C191897082 @default.
- W4328088892 hasConceptScore W4328088892C192562407 @default.
- W4328088892 hasConceptScore W4328088892C19499675 @default.