Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328101186> ?p ?o ?g. }
- W4328101186 endingPage "109841" @default.
- W4328101186 startingPage "109841" @default.
- W4328101186 abstract "The quality of Electroencephalogram (EEG) signals is critical for revealing the neural mechanism of emotions. However, ocular artifacts decreased the signal to noise ratio (SNR) and covered the inherent cognitive component of EEGs, which pose a great challenge in neuroscience research.We proposed a novel unsupervised learning algorithm to adaptively remove the ocular artifacts by combining canonical correlation analysis (CCA), independent component analysis (ICA), higher-order statistics, empirical mode decomposition (EMD), and wavelet denoising techniques. Specifically, the combination of CCA and ICA aimed to improve the quality of source separation, while the higher-order statistics further located the source of ocular artifacts. Subsequently, these noised sources were further corrected by EMD and wavelet denoising to improve SNR of EEG signals.We evaluated the performance of our proposed method with simulation studies and real EEG applications. The results of simulation study showed our proposed method could significantly improve the quality of signals under almost all noise conditions compared to four state-of-art methods. Consistently, the experiments of real EEG applications showed that the proposed methods could efficiently restrict the components of ocular artifacts and preserve the inherent information of cognition processing to improve the reliability of related analysis such as power spectral density (PSD) and emotion recognition.Our proposed model outperforms the comparative methods in EEG recovery, which further improve the application performance such as PSD analysis and emotion recognition.The superior performance of our proposed method suggests that it is promising for removing ocular artifacts from EEG signals, which offers an efficient EEG preprocessing technology for the development of brain computer interface such as emotion recognition." @default.
- W4328101186 created "2023-03-22" @default.
- W4328101186 creator A5003061872 @default.
- W4328101186 creator A5005771354 @default.
- W4328101186 creator A5020286464 @default.
- W4328101186 creator A5028905364 @default.
- W4328101186 creator A5050647272 @default.
- W4328101186 creator A5061204988 @default.
- W4328101186 creator A5066423594 @default.
- W4328101186 creator A5069631113 @default.
- W4328101186 creator A5073580278 @default.
- W4328101186 creator A5074344655 @default.
- W4328101186 creator A5084968982 @default.
- W4328101186 date "2023-04-01" @default.
- W4328101186 modified "2023-10-16" @default.
- W4328101186 title "An adaptive joint CCA-ICA method for ocular artifact removal and its application to emotion classification" @default.
- W4328101186 cites W1925642146 @default.
- W4328101186 cites W1981650367 @default.
- W4328101186 cites W2008711187 @default.
- W4328101186 cites W2059251046 @default.
- W4328101186 cites W2099741732 @default.
- W4328101186 cites W2104714522 @default.
- W4328101186 cites W2120129518 @default.
- W4328101186 cites W2123649031 @default.
- W4328101186 cites W2141224535 @default.
- W4328101186 cites W2149407814 @default.
- W4328101186 cites W2150832917 @default.
- W4328101186 cites W2153635508 @default.
- W4328101186 cites W2605163429 @default.
- W4328101186 cites W2622507035 @default.
- W4328101186 cites W2749183303 @default.
- W4328101186 cites W2770728546 @default.
- W4328101186 cites W2893628967 @default.
- W4328101186 cites W2898824151 @default.
- W4328101186 cites W2910690097 @default.
- W4328101186 cites W2913846632 @default.
- W4328101186 cites W2943680334 @default.
- W4328101186 cites W2962905870 @default.
- W4328101186 cites W2964693966 @default.
- W4328101186 cites W2997207075 @default.
- W4328101186 cites W2999110452 @default.
- W4328101186 cites W3008954403 @default.
- W4328101186 cites W3015599872 @default.
- W4328101186 cites W3018794429 @default.
- W4328101186 cites W3021938088 @default.
- W4328101186 cites W3033512507 @default.
- W4328101186 cites W3039648615 @default.
- W4328101186 cites W3109528530 @default.
- W4328101186 cites W3128254639 @default.
- W4328101186 cites W3134792331 @default.
- W4328101186 cites W3136538745 @default.
- W4328101186 cites W3202417708 @default.
- W4328101186 cites W3214091781 @default.
- W4328101186 cites W4214852760 @default.
- W4328101186 cites W4223919817 @default.
- W4328101186 cites W4285218596 @default.
- W4328101186 cites W4285274385 @default.
- W4328101186 cites W4307958299 @default.
- W4328101186 cites W4309235147 @default.
- W4328101186 cites W4312383265 @default.
- W4328101186 doi "https://doi.org/10.1016/j.jneumeth.2023.109841" @default.
- W4328101186 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36948359" @default.
- W4328101186 hasPublicationYear "2023" @default.
- W4328101186 type Work @default.
- W4328101186 citedByCount "0" @default.
- W4328101186 crossrefType "journal-article" @default.
- W4328101186 hasAuthorship W4328101186A5003061872 @default.
- W4328101186 hasAuthorship W4328101186A5005771354 @default.
- W4328101186 hasAuthorship W4328101186A5020286464 @default.
- W4328101186 hasAuthorship W4328101186A5028905364 @default.
- W4328101186 hasAuthorship W4328101186A5050647272 @default.
- W4328101186 hasAuthorship W4328101186A5061204988 @default.
- W4328101186 hasAuthorship W4328101186A5066423594 @default.
- W4328101186 hasAuthorship W4328101186A5069631113 @default.
- W4328101186 hasAuthorship W4328101186A5073580278 @default.
- W4328101186 hasAuthorship W4328101186A5074344655 @default.
- W4328101186 hasAuthorship W4328101186A5084968982 @default.
- W4328101186 hasConcept C106131492 @default.
- W4328101186 hasConcept C115961682 @default.
- W4328101186 hasConcept C118552586 @default.
- W4328101186 hasConcept C120317606 @default.
- W4328101186 hasConcept C127162648 @default.
- W4328101186 hasConcept C153180895 @default.
- W4328101186 hasConcept C153874254 @default.
- W4328101186 hasConcept C154945302 @default.
- W4328101186 hasConcept C15744967 @default.
- W4328101186 hasConcept C163294075 @default.
- W4328101186 hasConcept C25570617 @default.
- W4328101186 hasConcept C27438332 @default.
- W4328101186 hasConcept C2779010991 @default.
- W4328101186 hasConcept C28490314 @default.
- W4328101186 hasConcept C31258907 @default.
- W4328101186 hasConcept C31972630 @default.
- W4328101186 hasConcept C34736171 @default.
- W4328101186 hasConcept C41008148 @default.
- W4328101186 hasConcept C47432892 @default.
- W4328101186 hasConcept C51432778 @default.
- W4328101186 hasConcept C522805319 @default.