Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328102253> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4328102253 endingPage "5000" @default.
- W4328102253 startingPage "4973" @default.
- W4328102253 abstract "In recent years, regional traffic congestion has become increasingly frequent, which seriously affects the safety and efficiency of urban vehicles. Therefore, traffic flow prediction methods based on artificial intelligence are widely used in traffic management. However, the existing traffic flow prediction methods need to collect raw data, which involves risks of vehicle privacy leakage. Federated learning, which shares model updates without exchanging local data, has gradually become an effective solution to achieve privacy protection. A federated learning traffic flow prediction model for regional transportation systems is proposed in this paper. At the same time, due to the emergence of highly intelligent automatic driving vehicles, a vehicle scheduling system, which can control the departure and routes of vehicles in urban regions is developed in the proposed approach. A road weight measurement method combined with real time traffic information is introduced to optimize the driving routes of vehicles to reduce the average travel time. Additionally, departure strategy, is another factor that has a great influence on traffic efficiency, but is usually ignored in the past, and is also carefully compared and studied in this paper. The numerical results illustrate that the proposed schemes can effectively improve the privacy protection ability of model updates, reduce the scheduling completion time by using the traffic flow prediction model, and realize the comparative research between departure strategies, which provides a reference for developing a safe and efficient regional transportation system." @default.
- W4328102253 created "2023-03-22" @default.
- W4328102253 creator A5037389374 @default.
- W4328102253 creator A5049701424 @default.
- W4328102253 date "2023-05-01" @default.
- W4328102253 modified "2023-10-16" @default.
- W4328102253 title "On improving the regional transportation efficiency based on federated learning" @default.
- W4328102253 cites W1969483458 @default.
- W4328102253 cites W1969907290 @default.
- W4328102253 cites W1972314457 @default.
- W4328102253 cites W1996058270 @default.
- W4328102253 cites W2011282943 @default.
- W4328102253 cites W2011925575 @default.
- W4328102253 cites W2039825359 @default.
- W4328102253 cites W2092923999 @default.
- W4328102253 cites W2100522105 @default.
- W4328102253 cites W2150470619 @default.
- W4328102253 cites W2227557434 @default.
- W4328102253 cites W2319660838 @default.
- W4328102253 cites W2593182953 @default.
- W4328102253 cites W2605270919 @default.
- W4328102253 cites W2613331518 @default.
- W4328102253 cites W2793054085 @default.
- W4328102253 cites W2803775364 @default.
- W4328102253 cites W2946231253 @default.
- W4328102253 cites W2982801613 @default.
- W4328102253 cites W2990324128 @default.
- W4328102253 cites W3043071284 @default.
- W4328102253 cites W3188785851 @default.
- W4328102253 cites W3211010156 @default.
- W4328102253 cites W3214919557 @default.
- W4328102253 cites W4206724648 @default.
- W4328102253 doi "https://doi.org/10.1016/j.jfranklin.2023.03.035" @default.
- W4328102253 hasPublicationYear "2023" @default.
- W4328102253 type Work @default.
- W4328102253 citedByCount "0" @default.
- W4328102253 crossrefType "journal-article" @default.
- W4328102253 hasAuthorship W4328102253A5037389374 @default.
- W4328102253 hasAuthorship W4328102253A5049701424 @default.
- W4328102253 hasConcept C127413603 @default.
- W4328102253 hasConcept C132964779 @default.
- W4328102253 hasConcept C199360897 @default.
- W4328102253 hasConcept C206729178 @default.
- W4328102253 hasConcept C207512268 @default.
- W4328102253 hasConcept C21547014 @default.
- W4328102253 hasConcept C22212356 @default.
- W4328102253 hasConcept C2779888511 @default.
- W4328102253 hasConcept C38652104 @default.
- W4328102253 hasConcept C41008148 @default.
- W4328102253 hasConcept C47796450 @default.
- W4328102253 hasConcept C79403827 @default.
- W4328102253 hasConceptScore W4328102253C127413603 @default.
- W4328102253 hasConceptScore W4328102253C132964779 @default.
- W4328102253 hasConceptScore W4328102253C199360897 @default.
- W4328102253 hasConceptScore W4328102253C206729178 @default.
- W4328102253 hasConceptScore W4328102253C207512268 @default.
- W4328102253 hasConceptScore W4328102253C21547014 @default.
- W4328102253 hasConceptScore W4328102253C22212356 @default.
- W4328102253 hasConceptScore W4328102253C2779888511 @default.
- W4328102253 hasConceptScore W4328102253C38652104 @default.
- W4328102253 hasConceptScore W4328102253C41008148 @default.
- W4328102253 hasConceptScore W4328102253C47796450 @default.
- W4328102253 hasConceptScore W4328102253C79403827 @default.
- W4328102253 hasIssue "7" @default.
- W4328102253 hasLocation W43281022531 @default.
- W4328102253 hasOpenAccess W4328102253 @default.
- W4328102253 hasPrimaryLocation W43281022531 @default.
- W4328102253 hasRelatedWork W1500701231 @default.
- W4328102253 hasRelatedWork W1534196587 @default.
- W4328102253 hasRelatedWork W2037952648 @default.
- W4328102253 hasRelatedWork W2069314098 @default.
- W4328102253 hasRelatedWork W2533952097 @default.
- W4328102253 hasRelatedWork W2790065651 @default.
- W4328102253 hasRelatedWork W4212915101 @default.
- W4328102253 hasRelatedWork W586562341 @default.
- W4328102253 hasRelatedWork W659374819 @default.
- W4328102253 hasRelatedWork W2520738970 @default.
- W4328102253 hasVolume "360" @default.
- W4328102253 isParatext "false" @default.
- W4328102253 isRetracted "false" @default.
- W4328102253 workType "article" @default.