Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328102267> ?p ?o ?g. }
- W4328102267 endingPage "100044" @default.
- W4328102267 startingPage "100044" @default.
- W4328102267 abstract "State number, operation power, dynamic range and conductance weight update linearity are key synaptic device performance metrics for high-accuracy and low-power-consumption neuromorphic computing in hardware. However, high linearity and low power consumption couldn't be simultaneously achieved by most of the reported synaptic devices, which limits the performance of the hardware. This work demonstrates van der Waals (vdW) stacked ferroelectric field-effect transistors (FeFET) with single-crystalline ferroelectric nanoflakes. Ferroelectrics are of fine vdW interface and partial polarization switching of multi-domains under electric field pulses, which makes the FeFETs exhibit multi-state memory characteristics and excellent synaptic plasticity. They also exhibit a desired linear conductance weight update with 128 conductance states, a sufficiently high dynamic range of Gmax/Gmin > 120, and a low power consumption of 10 fJ/spike using identical pulses. Based on such an all-round device, a two-layer artificial neural network was built to conduct Modified National Institute of Standards and Technology (MNIST) digital numbers and electrocardiogram (ECG) pattern-recognition simulations, with the high accuracies reaching 97.6% and 92.4%, respectively. The remarkable performance demonstrates that vdW-FeFET is of obvious advantages in high-precision neuromorphic computing applications." @default.
- W4328102267 created "2023-03-22" @default.
- W4328102267 creator A5021067194 @default.
- W4328102267 creator A5022255209 @default.
- W4328102267 creator A5025678097 @default.
- W4328102267 creator A5031441602 @default.
- W4328102267 creator A5048528530 @default.
- W4328102267 creator A5052756150 @default.
- W4328102267 creator A5056384169 @default.
- W4328102267 creator A5060457858 @default.
- W4328102267 creator A5066528514 @default.
- W4328102267 creator A5087182077 @default.
- W4328102267 creator A5087328346 @default.
- W4328102267 creator A5091456218 @default.
- W4328102267 date "2023-06-01" @default.
- W4328102267 modified "2023-09-28" @default.
- W4328102267 title "Van der Waals ferroelectric transistors: the all-round artificial synapses for high-precision neuromorphic computing" @default.
- W4328102267 cites W1976174178 @default.
- W4328102267 cites W1976518187 @default.
- W4328102267 cites W2031176269 @default.
- W4328102267 cites W2138913040 @default.
- W4328102267 cites W2591029953 @default.
- W4328102267 cites W2604443664 @default.
- W4328102267 cites W2613205562 @default.
- W4328102267 cites W2614342775 @default.
- W4328102267 cites W2782046614 @default.
- W4328102267 cites W2785141883 @default.
- W4328102267 cites W2790669755 @default.
- W4328102267 cites W2796625795 @default.
- W4328102267 cites W2805362231 @default.
- W4328102267 cites W2883711383 @default.
- W4328102267 cites W2886721396 @default.
- W4328102267 cites W2912035255 @default.
- W4328102267 cites W2919115771 @default.
- W4328102267 cites W2923010225 @default.
- W4328102267 cites W2942216650 @default.
- W4328102267 cites W2944331166 @default.
- W4328102267 cites W2963781604 @default.
- W4328102267 cites W2990793844 @default.
- W4328102267 cites W2996650495 @default.
- W4328102267 cites W3003821665 @default.
- W4328102267 cites W3007824922 @default.
- W4328102267 cites W3031744576 @default.
- W4328102267 cites W3036995891 @default.
- W4328102267 cites W3041554531 @default.
- W4328102267 cites W3048118328 @default.
- W4328102267 cites W3085370829 @default.
- W4328102267 cites W3095256020 @default.
- W4328102267 cites W3096703634 @default.
- W4328102267 cites W3101222043 @default.
- W4328102267 cites W3116660810 @default.
- W4328102267 cites W3130048023 @default.
- W4328102267 cites W3160268997 @default.
- W4328102267 cites W3181311515 @default.
- W4328102267 cites W3183911933 @default.
- W4328102267 cites W3186271703 @default.
- W4328102267 cites W3188541551 @default.
- W4328102267 cites W3194579949 @default.
- W4328102267 cites W3206732377 @default.
- W4328102267 cites W4205565520 @default.
- W4328102267 cites W4210404145 @default.
- W4328102267 cites W4210619944 @default.
- W4328102267 cites W4210772993 @default.
- W4328102267 cites W4211225531 @default.
- W4328102267 cites W4213333333 @default.
- W4328102267 cites W4220920825 @default.
- W4328102267 cites W4223592331 @default.
- W4328102267 cites W4280565783 @default.
- W4328102267 cites W4280576974 @default.
- W4328102267 cites W4283389692 @default.
- W4328102267 doi "https://doi.org/10.1016/j.chip.2023.100044" @default.
- W4328102267 hasPublicationYear "2023" @default.
- W4328102267 type Work @default.
- W4328102267 citedByCount "0" @default.
- W4328102267 crossrefType "journal-article" @default.
- W4328102267 hasAuthorship W4328102267A5021067194 @default.
- W4328102267 hasAuthorship W4328102267A5022255209 @default.
- W4328102267 hasAuthorship W4328102267A5025678097 @default.
- W4328102267 hasAuthorship W4328102267A5031441602 @default.
- W4328102267 hasAuthorship W4328102267A5048528530 @default.
- W4328102267 hasAuthorship W4328102267A5052756150 @default.
- W4328102267 hasAuthorship W4328102267A5056384169 @default.
- W4328102267 hasAuthorship W4328102267A5060457858 @default.
- W4328102267 hasAuthorship W4328102267A5066528514 @default.
- W4328102267 hasAuthorship W4328102267A5087182077 @default.
- W4328102267 hasAuthorship W4328102267A5087328346 @default.
- W4328102267 hasAuthorship W4328102267A5091456218 @default.
- W4328102267 hasBestOaLocation W43281022671 @default.
- W4328102267 hasConcept C119599485 @default.
- W4328102267 hasConcept C121332964 @default.
- W4328102267 hasConcept C121932024 @default.
- W4328102267 hasConcept C126061179 @default.
- W4328102267 hasConcept C127413603 @default.
- W4328102267 hasConcept C133386390 @default.
- W4328102267 hasConcept C151927369 @default.
- W4328102267 hasConcept C154945302 @default.
- W4328102267 hasConcept C165801399 @default.
- W4328102267 hasConcept C172385210 @default.