Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328102273> ?p ?o ?g. }
- W4328102273 endingPage "e00607" @default.
- W4328102273 startingPage "e00607" @default.
- W4328102273 abstract "Iron and steel are valuable commodities worldwide. Pig iron is produced mainly by blast furnaces, being the primary raw material used in steel manufacturing. The ironmaking sector is intensive in energy use and greenhouse gas emission; however, detailed information on further environmental impacts concerning the blend of material sources and co-product utilization as well as a rigorous application of the life cycle assessment (LCA) method are scarce. This study aimed to assess the environmental and energy performance of the production of 1.0 t of pig iron from cradle-to-gate via LCA. Global warming potential (GWP), renewable and non-renewable cumulative energy demand (CEDR and CEDNR), fossil resource scarcity (FRS), mineral resource scarcity (MRS), blue water footprint (WF), and land use (LU) were assessed in five scenarios in the Brazilian context, being S0: the baseline scenario with coke as a carbon source; S1: partial utilization of by-/co-products (top gas and slag), representing the current industry practice; S2: carbon and iron input blends proportional to the current industry practice; S3: current industry mix (S1 and S2 combined); and S4: ex-ante (forecast) scenario with an enhanced blend of inputs and maximum utilization of co-products. Results show that, when evaluated against an unrefined but realistic fossil-based state of the technology (S0), the existing practice in co-product utilization (S1) provided more gains in terms of GWP, CEDNR, FRS, and MRS (11 % on average) than the current iron and carbon input blends (S2, 9 % on average) if compared side-by-side. The current industry mix (S3) showed further improvement in environmental and energy performance (22 % on average) compared with the baseline scenario (S0), while the forecasted scenario (S4) indicated additional gains, reducing GWP by 47 % (down to ~1 t CO2 eq), CEDNR by 69 %, FRS by 70 %, MRS by 12 %, and WF by 5 %. The GWP, CEDNR, and FRS presented the greatest improvements with a significant statistical difference, and using charcoal as a carbon source was key in that regard, despite the great increase in CEDR (3× for biomass) and LU (2×) indicators suggesting that a robust sustainable wood supply chain will be decisive for the sector strategy. The sensitivity analysis (SA) and benchmarking of the ex-ante scenario (S4) showed notable competitiveness of such pig iron in the global market, especially for carbon and energy footprints, reaching 0.69 t CO2 eq t−1 pig iron and 4.6 GJNR t−1 pig iron from 100 % sustainable charcoal and including rail logistics (SAiv), which are from 2× to 5× smaller than those of any conventional blast furnace pig iron reported in the consulted literature." @default.
- W4328102273 created "2023-03-22" @default.
- W4328102273 creator A5009380044 @default.
- W4328102273 creator A5010930057 @default.
- W4328102273 creator A5031674437 @default.
- W4328102273 creator A5063182783 @default.
- W4328102273 creator A5065922208 @default.
- W4328102273 creator A5087282423 @default.
- W4328102273 date "2023-07-01" @default.
- W4328102273 modified "2023-09-26" @default.
- W4328102273 title "Rigorous environmental and energy life cycle assessment of blast furnace pig iron in Brazil: The role of carbon and iron sources, and co-product utilization" @default.
- W4328102273 cites W1528236117 @default.
- W4328102273 cites W1972316299 @default.
- W4328102273 cites W1988078321 @default.
- W4328102273 cites W1991394844 @default.
- W4328102273 cites W1998245171 @default.
- W4328102273 cites W2013339164 @default.
- W4328102273 cites W2015023821 @default.
- W4328102273 cites W2017043464 @default.
- W4328102273 cites W2021253876 @default.
- W4328102273 cites W2044233248 @default.
- W4328102273 cites W2050212459 @default.
- W4328102273 cites W2064207656 @default.
- W4328102273 cites W2076817790 @default.
- W4328102273 cites W2110287480 @default.
- W4328102273 cites W2140482882 @default.
- W4328102273 cites W2179886217 @default.
- W4328102273 cites W2186412737 @default.
- W4328102273 cites W2309397314 @default.
- W4328102273 cites W2332195006 @default.
- W4328102273 cites W2340972631 @default.
- W4328102273 cites W2480143162 @default.
- W4328102273 cites W2487864044 @default.
- W4328102273 cites W2564630286 @default.
- W4328102273 cites W2602746127 @default.
- W4328102273 cites W2607404268 @default.
- W4328102273 cites W2752509992 @default.
- W4328102273 cites W2794175716 @default.
- W4328102273 cites W2796987944 @default.
- W4328102273 cites W2889165195 @default.
- W4328102273 cites W2902841140 @default.
- W4328102273 cites W3010224993 @default.
- W4328102273 cites W3013158353 @default.
- W4328102273 cites W3042272260 @default.
- W4328102273 cites W3046903223 @default.
- W4328102273 cites W3047310091 @default.
- W4328102273 cites W3048371058 @default.
- W4328102273 cites W3060036284 @default.
- W4328102273 cites W3080857495 @default.
- W4328102273 cites W3082277495 @default.
- W4328102273 cites W3112885862 @default.
- W4328102273 cites W3134380661 @default.
- W4328102273 cites W3153634856 @default.
- W4328102273 cites W4299574631 @default.
- W4328102273 cites W4307623850 @default.
- W4328102273 cites W4309780596 @default.
- W4328102273 doi "https://doi.org/10.1016/j.susmat.2023.e00607" @default.
- W4328102273 hasPublicationYear "2023" @default.
- W4328102273 type Work @default.
- W4328102273 citedByCount "0" @default.
- W4328102273 crossrefType "journal-article" @default.
- W4328102273 hasAuthorship W4328102273A5009380044 @default.
- W4328102273 hasAuthorship W4328102273A5010930057 @default.
- W4328102273 hasAuthorship W4328102273A5031674437 @default.
- W4328102273 hasAuthorship W4328102273A5063182783 @default.
- W4328102273 hasAuthorship W4328102273A5065922208 @default.
- W4328102273 hasAuthorship W4328102273A5087282423 @default.
- W4328102273 hasBestOaLocation W43281022731 @default.
- W4328102273 hasConcept C119599485 @default.
- W4328102273 hasConcept C127413603 @default.
- W4328102273 hasConcept C139719470 @default.
- W4328102273 hasConcept C151730666 @default.
- W4328102273 hasConcept C162324750 @default.
- W4328102273 hasConcept C178790620 @default.
- W4328102273 hasConcept C185592680 @default.
- W4328102273 hasConcept C188573790 @default.
- W4328102273 hasConcept C18903297 @default.
- W4328102273 hasConcept C191897082 @default.
- W4328102273 hasConcept C192562407 @default.
- W4328102273 hasConcept C206139338 @default.
- W4328102273 hasConcept C2778348673 @default.
- W4328102273 hasConcept C2778706760 @default.
- W4328102273 hasConcept C2779343474 @default.
- W4328102273 hasConcept C2780269488 @default.
- W4328102273 hasConcept C2780936489 @default.
- W4328102273 hasConcept C2781409005 @default.
- W4328102273 hasConcept C39432304 @default.
- W4328102273 hasConcept C47737302 @default.
- W4328102273 hasConcept C548081761 @default.
- W4328102273 hasConcept C68189081 @default.
- W4328102273 hasConcept C86803240 @default.
- W4328102273 hasConcept C87717796 @default.
- W4328102273 hasConceptScore W4328102273C119599485 @default.
- W4328102273 hasConceptScore W4328102273C127413603 @default.
- W4328102273 hasConceptScore W4328102273C139719470 @default.
- W4328102273 hasConceptScore W4328102273C151730666 @default.
- W4328102273 hasConceptScore W4328102273C162324750 @default.
- W4328102273 hasConceptScore W4328102273C178790620 @default.