Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328102523> ?p ?o ?g. }
- W4328102523 endingPage "110222" @default.
- W4328102523 startingPage "110222" @default.
- W4328102523 abstract "As the global environment deteriorates further, the decision-makers of enterprises no longer only consider qualitative factors such as yield in the choice of machine tools, but also pay more attention to the green sustainability and intelligent structure. In this study, a two-stage decision-making framework is established and a decision support system that combines quantitative and qualitative analysis is built to handle the machine tool purchasing decision. The first stage focused on quantitative analysis is to propose the mathematical model of the intelligent production system. Two heuristic algorithms that are automatic optimization method and periodic search method are designed to preliminary screen alternatives. The second stage related to qualitative analysis is to propose an improved TOPSIS method with nested probabilistic linguistic term set to obtain the best alternative comprehensively. In the end, we design the production schedule for the best alternative and prove the practicability and validity of the proposed models and algorithms. This study contributes to providing a theoretical perspective of representing uncertain information, as well as a practical scenario for purchasing decisions." @default.
- W4328102523 created "2023-03-22" @default.
- W4328102523 creator A5033323153 @default.
- W4328102523 creator A5055814385 @default.
- W4328102523 creator A5091711243 @default.
- W4328102523 date "2023-05-01" @default.
- W4328102523 modified "2023-10-16" @default.
- W4328102523 title "Purchasing decision of machine tool by exploiting uncertain information in nested probabilistic linguistic model" @default.
- W4328102523 cites W1971403896 @default.
- W4328102523 cites W1978062397 @default.
- W4328102523 cites W1983350566 @default.
- W4328102523 cites W1987425643 @default.
- W4328102523 cites W2009682549 @default.
- W4328102523 cites W2024395367 @default.
- W4328102523 cites W2030097853 @default.
- W4328102523 cites W2065209593 @default.
- W4328102523 cites W2076704136 @default.
- W4328102523 cites W2092989683 @default.
- W4328102523 cites W2095205716 @default.
- W4328102523 cites W2115819682 @default.
- W4328102523 cites W2151717769 @default.
- W4328102523 cites W2160351144 @default.
- W4328102523 cites W2359186709 @default.
- W4328102523 cites W2474884296 @default.
- W4328102523 cites W2521565815 @default.
- W4328102523 cites W2610057758 @default.
- W4328102523 cites W2744493907 @default.
- W4328102523 cites W2811200627 @default.
- W4328102523 cites W2895015859 @default.
- W4328102523 cites W2905455242 @default.
- W4328102523 cites W2911591129 @default.
- W4328102523 cites W2913971141 @default.
- W4328102523 cites W2941987130 @default.
- W4328102523 cites W2947739764 @default.
- W4328102523 cites W2963575907 @default.
- W4328102523 cites W2971879057 @default.
- W4328102523 cites W2981268106 @default.
- W4328102523 cites W2982395995 @default.
- W4328102523 cites W2998671458 @default.
- W4328102523 cites W3007476780 @default.
- W4328102523 cites W3007556850 @default.
- W4328102523 cites W3009309091 @default.
- W4328102523 cites W3021328243 @default.
- W4328102523 cites W3041426326 @default.
- W4328102523 cites W3049022727 @default.
- W4328102523 cites W3196284037 @default.
- W4328102523 cites W4212847014 @default.
- W4328102523 cites W4296619072 @default.
- W4328102523 cites W4296934756 @default.
- W4328102523 cites W4297215581 @default.
- W4328102523 cites W4306404046 @default.
- W4328102523 cites W4308326638 @default.
- W4328102523 cites W632039966 @default.
- W4328102523 doi "https://doi.org/10.1016/j.asoc.2023.110222" @default.
- W4328102523 hasPublicationYear "2023" @default.
- W4328102523 type Work @default.
- W4328102523 citedByCount "0" @default.
- W4328102523 crossrefType "journal-article" @default.
- W4328102523 hasAuthorship W4328102523A5033323153 @default.
- W4328102523 hasAuthorship W4328102523A5055814385 @default.
- W4328102523 hasAuthorship W4328102523A5091711243 @default.
- W4328102523 hasConcept C107327155 @default.
- W4328102523 hasConcept C111919701 @default.
- W4328102523 hasConcept C119857082 @default.
- W4328102523 hasConcept C124101348 @default.
- W4328102523 hasConcept C127413603 @default.
- W4328102523 hasConcept C139719470 @default.
- W4328102523 hasConcept C154945302 @default.
- W4328102523 hasConcept C162324750 @default.
- W4328102523 hasConcept C173801870 @default.
- W4328102523 hasConcept C177264268 @default.
- W4328102523 hasConcept C199360897 @default.
- W4328102523 hasConcept C21547014 @default.
- W4328102523 hasConcept C2778348673 @default.
- W4328102523 hasConcept C2778813691 @default.
- W4328102523 hasConcept C33923547 @default.
- W4328102523 hasConcept C41008148 @default.
- W4328102523 hasConcept C42475967 @default.
- W4328102523 hasConcept C49937458 @default.
- W4328102523 hasConcept C51566761 @default.
- W4328102523 hasConcept C68387754 @default.
- W4328102523 hasConceptScore W4328102523C107327155 @default.
- W4328102523 hasConceptScore W4328102523C111919701 @default.
- W4328102523 hasConceptScore W4328102523C119857082 @default.
- W4328102523 hasConceptScore W4328102523C124101348 @default.
- W4328102523 hasConceptScore W4328102523C127413603 @default.
- W4328102523 hasConceptScore W4328102523C139719470 @default.
- W4328102523 hasConceptScore W4328102523C154945302 @default.
- W4328102523 hasConceptScore W4328102523C162324750 @default.
- W4328102523 hasConceptScore W4328102523C173801870 @default.
- W4328102523 hasConceptScore W4328102523C177264268 @default.
- W4328102523 hasConceptScore W4328102523C199360897 @default.
- W4328102523 hasConceptScore W4328102523C21547014 @default.
- W4328102523 hasConceptScore W4328102523C2778348673 @default.
- W4328102523 hasConceptScore W4328102523C2778813691 @default.
- W4328102523 hasConceptScore W4328102523C33923547 @default.
- W4328102523 hasConceptScore W4328102523C41008148 @default.
- W4328102523 hasConceptScore W4328102523C42475967 @default.