Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328103234> ?p ?o ?g. }
- W4328103234 endingPage "110228" @default.
- W4328103234 startingPage "110228" @default.
- W4328103234 abstract "Machine learning has the inspiring potential for fault prediction in HVAC systems, which is essential for the system energy efficiency. For the scenario of multiple faults, however, machine learning model is not efficient because the training datasets of this scenario are difficult to collect in the real applications. This paper proposes the novel knowledge-embedded deep belief network (DBN) method to diagnose the electronic-thermal and thermal-thermal multiple faults for chillers in the buildings. Firstly, the characteristics of electronic-thermal and thermal-thermal faults are analyzed through the experiments. Through detecting the sensor biases, the sensor-thermal faults are decoupled successfully. Secondly, the representative features are extracted using the proposed DBN model. In the fine-tuning process, the original DBN network is optimized through embedding the extracted knowledge rules. We integrate the knowledge-embedded DBN, extreme learning machine (ELM) and k-nearest neighbor (KNN) as the diagnosis model. The experimental datasets are used to validate the proposed multi-fault diagnosis method. The results show that its diagnosis performance is satisfactory when the training dataset of some fault is absent. Finally, we develop the cloud-based diagnosis and online management platform. The proposed method is deployed on the cloud to realize online diagnosis and smart management." @default.
- W4328103234 created "2023-03-22" @default.
- W4328103234 creator A5002510823 @default.
- W4328103234 creator A5004780683 @default.
- W4328103234 creator A5023156699 @default.
- W4328103234 creator A5040778872 @default.
- W4328103234 creator A5061728945 @default.
- W4328103234 creator A5071317221 @default.
- W4328103234 creator A5080684297 @default.
- W4328103234 date "2023-05-01" @default.
- W4328103234 modified "2023-10-17" @default.
- W4328103234 title "Knowledge-extracted deep learning diagnosis and its cloud-based management for multiple faults of chiller" @default.
- W4328103234 cites W1987801135 @default.
- W4328103234 cites W1993011604 @default.
- W4328103234 cites W2000025671 @default.
- W4328103234 cites W2009510717 @default.
- W4328103234 cites W2012072009 @default.
- W4328103234 cites W2038076318 @default.
- W4328103234 cites W2047552081 @default.
- W4328103234 cites W2049389981 @default.
- W4328103234 cites W2067637335 @default.
- W4328103234 cites W2077332493 @default.
- W4328103234 cites W2083658684 @default.
- W4328103234 cites W2090545420 @default.
- W4328103234 cites W2111072639 @default.
- W4328103234 cites W2136922672 @default.
- W4328103234 cites W2290145898 @default.
- W4328103234 cites W2521479021 @default.
- W4328103234 cites W2526913166 @default.
- W4328103234 cites W2599541685 @default.
- W4328103234 cites W2925322067 @default.
- W4328103234 cites W2936774193 @default.
- W4328103234 cites W2958468174 @default.
- W4328103234 cites W3016744836 @default.
- W4328103234 cites W3083934914 @default.
- W4328103234 cites W3088659404 @default.
- W4328103234 cites W3157059293 @default.
- W4328103234 cites W3159013246 @default.
- W4328103234 cites W3161709284 @default.
- W4328103234 cites W3181638476 @default.
- W4328103234 cites W4206381317 @default.
- W4328103234 cites W4307724467 @default.
- W4328103234 doi "https://doi.org/10.1016/j.buildenv.2023.110228" @default.
- W4328103234 hasPublicationYear "2023" @default.
- W4328103234 type Work @default.
- W4328103234 citedByCount "1" @default.
- W4328103234 countsByYear W43281032342023 @default.
- W4328103234 crossrefType "journal-article" @default.
- W4328103234 hasAuthorship W4328103234A5002510823 @default.
- W4328103234 hasAuthorship W4328103234A5004780683 @default.
- W4328103234 hasAuthorship W4328103234A5023156699 @default.
- W4328103234 hasAuthorship W4328103234A5040778872 @default.
- W4328103234 hasAuthorship W4328103234A5061728945 @default.
- W4328103234 hasAuthorship W4328103234A5071317221 @default.
- W4328103234 hasAuthorship W4328103234A5080684297 @default.
- W4328103234 hasConcept C103742991 @default.
- W4328103234 hasConcept C108583219 @default.
- W4328103234 hasConcept C111919701 @default.
- W4328103234 hasConcept C119857082 @default.
- W4328103234 hasConcept C122346748 @default.
- W4328103234 hasConcept C124101348 @default.
- W4328103234 hasConcept C127313418 @default.
- W4328103234 hasConcept C127413603 @default.
- W4328103234 hasConcept C154945302 @default.
- W4328103234 hasConcept C165205528 @default.
- W4328103234 hasConcept C175551986 @default.
- W4328103234 hasConcept C41008148 @default.
- W4328103234 hasConcept C78519656 @default.
- W4328103234 hasConcept C79403827 @default.
- W4328103234 hasConcept C79974875 @default.
- W4328103234 hasConcept C97385483 @default.
- W4328103234 hasConcept C98045186 @default.
- W4328103234 hasConceptScore W4328103234C103742991 @default.
- W4328103234 hasConceptScore W4328103234C108583219 @default.
- W4328103234 hasConceptScore W4328103234C111919701 @default.
- W4328103234 hasConceptScore W4328103234C119857082 @default.
- W4328103234 hasConceptScore W4328103234C122346748 @default.
- W4328103234 hasConceptScore W4328103234C124101348 @default.
- W4328103234 hasConceptScore W4328103234C127313418 @default.
- W4328103234 hasConceptScore W4328103234C127413603 @default.
- W4328103234 hasConceptScore W4328103234C154945302 @default.
- W4328103234 hasConceptScore W4328103234C165205528 @default.
- W4328103234 hasConceptScore W4328103234C175551986 @default.
- W4328103234 hasConceptScore W4328103234C41008148 @default.
- W4328103234 hasConceptScore W4328103234C78519656 @default.
- W4328103234 hasConceptScore W4328103234C79403827 @default.
- W4328103234 hasConceptScore W4328103234C79974875 @default.
- W4328103234 hasConceptScore W4328103234C97385483 @default.
- W4328103234 hasConceptScore W4328103234C98045186 @default.
- W4328103234 hasLocation W43281032341 @default.
- W4328103234 hasOpenAccess W4328103234 @default.
- W4328103234 hasPrimaryLocation W43281032341 @default.
- W4328103234 hasRelatedWork W1530536511 @default.
- W4328103234 hasRelatedWork W1974618110 @default.
- W4328103234 hasRelatedWork W2165991108 @default.
- W4328103234 hasRelatedWork W2565516711 @default.
- W4328103234 hasRelatedWork W2585432886 @default.
- W4328103234 hasRelatedWork W2770760954 @default.