Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328104175> ?p ?o ?g. }
- W4328104175 endingPage "103503" @default.
- W4328104175 startingPage "103503" @default.
- W4328104175 abstract "It has been documented that the hierarchical character of microstructure produced by laser powder bed fusion (L-PBF) is the key to superior mechanical properties. Especially important is a fine cell microstructure possessing heterogeneous distribution of dislocation density and alloying elements. Despite multiple studies that have investigated the effect of such L-PBF structure on the stress-strain response during monotonic loading, just a few investigations were devoted to cyclic behaviour. The present study delivers an insight into the cyclic behaviour of L-PBF processed metastable austenitic stainless steel 304L and its relation to the observed microstructure evolution and strain-induced martensitic transformation (SIMT). The combination of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations, and feritscope measurements enabled to follow the onset of strain-induced martensite (SIM) nucleation and underlying dislocation microstructure evolution. The cyclic behaviour consisted of initial cyclic softening regardless of subjected strain amplitude. Afterwards, milder cyclic softening or saturation stage followed until a final failure was characteristic for the tests held at low strain amplitudes (εa ≤ 0.5%). The third fatigue life stage, cyclic hardening, was recorded during fatigue tests held at εa > 0.5%. The excellent cyclic strength of stainless steel 304L is a direct consequence of cell microstructure containing high dislocation density walls and elemental microsegregation, which effectively inhibit dislocation motion. Cyclic softening was linked with cyclic strain localization into slip bands of decreased dislocation density and heavily altered dislocation cell walls. These bands have been observed for the first time in L-PBF-processed metals. This microstructural feature seems to be a variant of persistent slip bands (PSBs), a typical dislocation arrangement observed in conventionally produced materials subjected to cyclic loading. PSBs present the areas of intensive cyclic plasticity where the SIMT preferentially occurs upon further cycling. The increasing α´‐martensite volume fraction, accompanied by a formation of intermediate ε-martensite and deformation twinning, resulted in recorded cyclic hardening. The martensite nucleation sites are strongly determined by the underlying cell microstructure, in terms of cell walls dislocation density and chemical segregation, which is tightly related to utilized L-PBF process parameters. The present findings indicate a possible opportunity to control the magnitude of the SIMT susceptibility by fine-tuning of the L-PBF process parameters and consequently tailoring the cyclic behaviour." @default.
- W4328104175 created "2023-03-22" @default.
- W4328104175 creator A5002052972 @default.
- W4328104175 creator A5019008661 @default.
- W4328104175 creator A5046990231 @default.
- W4328104175 creator A5058072915 @default.
- W4328104175 creator A5070603271 @default.
- W4328104175 creator A5087352391 @default.
- W4328104175 date "2023-04-01" @default.
- W4328104175 modified "2023-10-14" @default.
- W4328104175 title "Cyclic behaviour and microstructural evolution of metastable austenitic stainless steel 304L produced by laser powder bed fusion" @default.
- W4328104175 cites W1274703628 @default.
- W4328104175 cites W1971115518 @default.
- W4328104175 cites W1986589151 @default.
- W4328104175 cites W1987475186 @default.
- W4328104175 cites W1991467115 @default.
- W4328104175 cites W2003165842 @default.
- W4328104175 cites W2020681582 @default.
- W4328104175 cites W2022544120 @default.
- W4328104175 cites W2024654735 @default.
- W4328104175 cites W2024770808 @default.
- W4328104175 cites W2025476404 @default.
- W4328104175 cites W2027783893 @default.
- W4328104175 cites W2041831698 @default.
- W4328104175 cites W2045346130 @default.
- W4328104175 cites W2045700656 @default.
- W4328104175 cites W2051332221 @default.
- W4328104175 cites W2056787219 @default.
- W4328104175 cites W2062466725 @default.
- W4328104175 cites W2063447831 @default.
- W4328104175 cites W2073868890 @default.
- W4328104175 cites W2087816662 @default.
- W4328104175 cites W2091120591 @default.
- W4328104175 cites W2093691823 @default.
- W4328104175 cites W2098459033 @default.
- W4328104175 cites W2099540110 @default.
- W4328104175 cites W2143865648 @default.
- W4328104175 cites W2161844751 @default.
- W4328104175 cites W2195820628 @default.
- W4328104175 cites W2210123006 @default.
- W4328104175 cites W2408860057 @default.
- W4328104175 cites W2607974332 @default.
- W4328104175 cites W2766901392 @default.
- W4328104175 cites W2772428090 @default.
- W4328104175 cites W2781476551 @default.
- W4328104175 cites W2794937405 @default.
- W4328104175 cites W2796899880 @default.
- W4328104175 cites W2889333773 @default.
- W4328104175 cites W2896892544 @default.
- W4328104175 cites W2901441031 @default.
- W4328104175 cites W2913936656 @default.
- W4328104175 cites W2914742371 @default.
- W4328104175 cites W2921801413 @default.
- W4328104175 cites W2966324813 @default.
- W4328104175 cites W2977404094 @default.
- W4328104175 cites W2981340905 @default.
- W4328104175 cites W2998226341 @default.
- W4328104175 cites W3001599244 @default.
- W4328104175 cites W3003789286 @default.
- W4328104175 cites W3004663886 @default.
- W4328104175 cites W3005032699 @default.
- W4328104175 cites W3042112156 @default.
- W4328104175 cites W3048369792 @default.
- W4328104175 cites W3082537098 @default.
- W4328104175 cites W3092263338 @default.
- W4328104175 cites W3104989938 @default.
- W4328104175 cites W3112492829 @default.
- W4328104175 cites W3131211099 @default.
- W4328104175 cites W3136034491 @default.
- W4328104175 cites W3166171164 @default.
- W4328104175 cites W3174012937 @default.
- W4328104175 cites W3179913621 @default.
- W4328104175 cites W3186352373 @default.
- W4328104175 cites W3186393512 @default.
- W4328104175 cites W3195207433 @default.
- W4328104175 cites W3216239128 @default.
- W4328104175 cites W4200266572 @default.
- W4328104175 cites W4200353395 @default.
- W4328104175 cites W4206401649 @default.
- W4328104175 cites W4221112391 @default.
- W4328104175 cites W4225847572 @default.
- W4328104175 cites W4228999216 @default.
- W4328104175 cites W4282035439 @default.
- W4328104175 cites W4283382946 @default.
- W4328104175 cites W4286252331 @default.
- W4328104175 cites W4297106247 @default.
- W4328104175 cites W4300862612 @default.
- W4328104175 cites W4311756742 @default.
- W4328104175 cites W899443080 @default.
- W4328104175 doi "https://doi.org/10.1016/j.addma.2023.103503" @default.
- W4328104175 hasPublicationYear "2023" @default.
- W4328104175 type Work @default.
- W4328104175 citedByCount "0" @default.
- W4328104175 crossrefType "journal-article" @default.
- W4328104175 hasAuthorship W4328104175A5002052972 @default.
- W4328104175 hasAuthorship W4328104175A5019008661 @default.
- W4328104175 hasAuthorship W4328104175A5046990231 @default.
- W4328104175 hasAuthorship W4328104175A5058072915 @default.