Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328104192> ?p ?o ?g. }
- W4328104192 endingPage "103506" @default.
- W4328104192 startingPage "103506" @default.
- W4328104192 abstract "Integrated computational materials engineering (ICME) combines the utility and efficiency of simulations with experimentation to drive forward materials design and discovery. These physics-based and data-driven frameworks have enabled material advancement by querying the complex process–structure–property–performance relationships to inform and guide experiments for the cost-effective design of alloy systems. In this study, a proven computational framework is presented and applied towards the tailored design of additively manufactured (AM) high-temperature NiTiHf shape-memory alloy (SMA) parts. Specifically, the effort deploys a design tool to attain specific transformation temperatures by composition control through differential evaporation, which in turn depends on processing conditions. This framework consists of a fast-acting discrete source model to simulate thermal history, a multi-layer model to account for composition evolution across melt pools, and a differential evaporation model to evaluate Nickel loss throughout the fabrication process. Besides the development of this multi-model chain, proper quantification of model uncertainties is critical to an ICME approach for materials design. Addressing these concerns, the parameter calibration and uncertainty quantification (UQ) of hierarchical model components is conducted through a Markov Chain Monte Carlo (MCMC) Bayesian approach over either the model itself or a representative Gaussian process-based surrogate model. These uncertainties are propagated across the models to the final response, i.e., martensitic start temperature. Subsequently, the hierarchical model framework is validated by comparing the experimental results with the most plausible values and uncertainty bounds obtained for the multi-model predictions at different processing conditions. From this calibrated and validated framework, process maps to streamline and illustrate the tailored design of AM high-temperature NiTiHf SMAs are developed, which demonstrates a promising path towards efficient design under uncertainty in additive manufacturing processes." @default.
- W4328104192 created "2023-03-22" @default.
- W4328104192 creator A5008572675 @default.
- W4328104192 creator A5016372585 @default.
- W4328104192 creator A5023033879 @default.
- W4328104192 creator A5031297718 @default.
- W4328104192 creator A5034855502 @default.
- W4328104192 creator A5047803150 @default.
- W4328104192 creator A5055147706 @default.
- W4328104192 creator A5055578810 @default.
- W4328104192 creator A5080455909 @default.
- W4328104192 date "2023-04-01" @default.
- W4328104192 modified "2023-10-18" @default.
- W4328104192 title "Uncertainty quantification and propagation across a multi-model computational framework for the tailored design of additively manufactured shape memory alloys" @default.
- W4328104192 cites W1483017121 @default.
- W4328104192 cites W1965192499 @default.
- W4328104192 cites W1973333099 @default.
- W4328104192 cites W1990077866 @default.
- W4328104192 cites W1995780830 @default.
- W4328104192 cites W1997992688 @default.
- W4328104192 cites W2003233573 @default.
- W4328104192 cites W2025248774 @default.
- W4328104192 cites W2030832292 @default.
- W4328104192 cites W2071544114 @default.
- W4328104192 cites W2089755190 @default.
- W4328104192 cites W2140291117 @default.
- W4328104192 cites W2217402295 @default.
- W4328104192 cites W2521101445 @default.
- W4328104192 cites W2566873156 @default.
- W4328104192 cites W2585220862 @default.
- W4328104192 cites W2604023308 @default.
- W4328104192 cites W2620635090 @default.
- W4328104192 cites W2771893925 @default.
- W4328104192 cites W2790043965 @default.
- W4328104192 cites W2898554759 @default.
- W4328104192 cites W2916729369 @default.
- W4328104192 cites W2917515850 @default.
- W4328104192 cites W2951794080 @default.
- W4328104192 cites W2962692198 @default.
- W4328104192 cites W2966359989 @default.
- W4328104192 cites W2981660049 @default.
- W4328104192 cites W2998281950 @default.
- W4328104192 cites W2999467413 @default.
- W4328104192 cites W3002271850 @default.
- W4328104192 cites W3098510609 @default.
- W4328104192 cites W3102014803 @default.
- W4328104192 cites W3133769525 @default.
- W4328104192 cites W4226453565 @default.
- W4328104192 cites W4290830477 @default.
- W4328104192 doi "https://doi.org/10.1016/j.addma.2023.103506" @default.
- W4328104192 hasPublicationYear "2023" @default.
- W4328104192 type Work @default.
- W4328104192 citedByCount "0" @default.
- W4328104192 crossrefType "journal-article" @default.
- W4328104192 hasAuthorship W4328104192A5008572675 @default.
- W4328104192 hasAuthorship W4328104192A5016372585 @default.
- W4328104192 hasAuthorship W4328104192A5023033879 @default.
- W4328104192 hasAuthorship W4328104192A5031297718 @default.
- W4328104192 hasAuthorship W4328104192A5034855502 @default.
- W4328104192 hasAuthorship W4328104192A5047803150 @default.
- W4328104192 hasAuthorship W4328104192A5055147706 @default.
- W4328104192 hasAuthorship W4328104192A5055578810 @default.
- W4328104192 hasAuthorship W4328104192A5080455909 @default.
- W4328104192 hasBestOaLocation W43281041921 @default.
- W4328104192 hasConcept C105795698 @default.
- W4328104192 hasConcept C107673813 @default.
- W4328104192 hasConcept C111350023 @default.
- W4328104192 hasConcept C111919701 @default.
- W4328104192 hasConcept C119857082 @default.
- W4328104192 hasConcept C121332964 @default.
- W4328104192 hasConcept C131675550 @default.
- W4328104192 hasConcept C136764020 @default.
- W4328104192 hasConcept C154945302 @default.
- W4328104192 hasConcept C163716315 @default.
- W4328104192 hasConcept C192562407 @default.
- W4328104192 hasConcept C19499675 @default.
- W4328104192 hasConcept C2777152284 @default.
- W4328104192 hasConcept C32230216 @default.
- W4328104192 hasConcept C33923547 @default.
- W4328104192 hasConcept C34559072 @default.
- W4328104192 hasConcept C41008148 @default.
- W4328104192 hasConcept C61326573 @default.
- W4328104192 hasConcept C62520636 @default.
- W4328104192 hasConcept C98045186 @default.
- W4328104192 hasConceptScore W4328104192C105795698 @default.
- W4328104192 hasConceptScore W4328104192C107673813 @default.
- W4328104192 hasConceptScore W4328104192C111350023 @default.
- W4328104192 hasConceptScore W4328104192C111919701 @default.
- W4328104192 hasConceptScore W4328104192C119857082 @default.
- W4328104192 hasConceptScore W4328104192C121332964 @default.
- W4328104192 hasConceptScore W4328104192C131675550 @default.
- W4328104192 hasConceptScore W4328104192C136764020 @default.
- W4328104192 hasConceptScore W4328104192C154945302 @default.
- W4328104192 hasConceptScore W4328104192C163716315 @default.
- W4328104192 hasConceptScore W4328104192C192562407 @default.
- W4328104192 hasConceptScore W4328104192C19499675 @default.
- W4328104192 hasConceptScore W4328104192C2777152284 @default.
- W4328104192 hasConceptScore W4328104192C32230216 @default.