Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328104974> ?p ?o ?g. }
- W4328104974 endingPage "129" @default.
- W4328104974 startingPage "117" @default.
- W4328104974 abstract "Fusing hyperspectral images (HSIs) and multispectral images (MSIs) is an economic and feasible way to obtain images with both high spectral resolution and spatial resolution. Due to the limited receptive field of convolution kernels, fusion methods based on convolutional neural networks (CNNs) fail to take advantage of the global relationship in a feature map. In this paper, to exploit the powerful capability of Transformer to extract global information from the whole feature map for fusion, we propose a novel Multiscale Spatial–spectral Transformer Network (MSST-Net). The proposed network is a two-branch network that integrates the self-attention mechanism of the Transformer to extract spectral features from HSI and spatial features from MSI, respectively. Before feature extraction, cross-modality concatenations are performed to achieve cross-modality information interaction between the two branches. Then, we propose a spectral Transformer (SpeT) to extract spectral features and introduce multiscale band/patch embeddings to obtain multiscale features through SpeTs and spatial Transformers (SpaTs). To further improve the network’s performance and generalization, we proposed a self-supervised pre-training strategy, in which a masked bands autoencoder (MBAE) and a masked patches autoencoder (MPAE) are specially designed for self-supervised pre-training of the SpeTs and SpaTs. Extensive experiments on simulated and real datasets illustrate that the proposed network can achieve better performance when compared to other state-of-the-art fusion methods. The code of MSST-Net will be available at http://www.jiasen.tech/papers/ for the sake of reproducibility." @default.
- W4328104974 created "2023-03-22" @default.
- W4328104974 creator A5035753061 @default.
- W4328104974 creator A5042964011 @default.
- W4328104974 creator A5053152303 @default.
- W4328104974 date "2023-08-01" @default.
- W4328104974 modified "2023-10-17" @default.
- W4328104974 title "Multiscale spatial–spectral transformer network for hyperspectral and multispectral image fusion" @default.
- W4328104974 cites W1495168473 @default.
- W4328104974 cites W1916874600 @default.
- W4328104974 cites W1990231296 @default.
- W4328104974 cites W2001800591 @default.
- W4328104974 cites W2012946078 @default.
- W4328104974 cites W2021046129 @default.
- W4328104974 cites W2089468765 @default.
- W4328104974 cites W2092116045 @default.
- W4328104974 cites W2100109944 @default.
- W4328104974 cites W2111924917 @default.
- W4328104974 cites W2139529730 @default.
- W4328104974 cites W2171108951 @default.
- W4328104974 cites W2221899823 @default.
- W4328104974 cites W2303172903 @default.
- W4328104974 cites W2476548250 @default.
- W4328104974 cites W2592312604 @default.
- W4328104974 cites W2598997103 @default.
- W4328104974 cites W2599737398 @default.
- W4328104974 cites W2621361177 @default.
- W4328104974 cites W2625894731 @default.
- W4328104974 cites W2748530166 @default.
- W4328104974 cites W2792111852 @default.
- W4328104974 cites W2798016471 @default.
- W4328104974 cites W2804744787 @default.
- W4328104974 cites W2910457605 @default.
- W4328104974 cites W2912145285 @default.
- W4328104974 cites W2945202593 @default.
- W4328104974 cites W2954661277 @default.
- W4328104974 cites W2963284277 @default.
- W4328104974 cites W2964140612 @default.
- W4328104974 cites W2989355516 @default.
- W4328104974 cites W2990162903 @default.
- W4328104974 cites W2998998031 @default.
- W4328104974 cites W2999694498 @default.
- W4328104974 cites W3016410830 @default.
- W4328104974 cites W3034400067 @default.
- W4328104974 cites W3034971973 @default.
- W4328104974 cites W3042771795 @default.
- W4328104974 cites W3083606623 @default.
- W4328104974 cites W3096609285 @default.
- W4328104974 cites W3097217077 @default.
- W4328104974 cites W3099239430 @default.
- W4328104974 cites W3099843321 @default.
- W4328104974 cites W3118914778 @default.
- W4328104974 cites W3123098349 @default.
- W4328104974 cites W3128776197 @default.
- W4328104974 cites W3170841864 @default.
- W4328104974 cites W3196711624 @default.
- W4328104974 cites W3203670180 @default.
- W4328104974 cites W4221162820 @default.
- W4328104974 cites W4226277663 @default.
- W4328104974 cites W4226469049 @default.
- W4328104974 cites W4285187901 @default.
- W4328104974 cites W4291138777 @default.
- W4328104974 cites W4294663621 @default.
- W4328104974 cites W4312272867 @default.
- W4328104974 cites W4312340363 @default.
- W4328104974 doi "https://doi.org/10.1016/j.inffus.2023.03.011" @default.
- W4328104974 hasPublicationYear "2023" @default.
- W4328104974 type Work @default.
- W4328104974 citedByCount "4" @default.
- W4328104974 countsByYear W43281049742023 @default.
- W4328104974 crossrefType "journal-article" @default.
- W4328104974 hasAuthorship W4328104974A5035753061 @default.
- W4328104974 hasAuthorship W4328104974A5042964011 @default.
- W4328104974 hasAuthorship W4328104974A5053152303 @default.
- W4328104974 hasConcept C101738243 @default.
- W4328104974 hasConcept C121332964 @default.
- W4328104974 hasConcept C153180895 @default.
- W4328104974 hasConcept C154945302 @default.
- W4328104974 hasConcept C159078339 @default.
- W4328104974 hasConcept C165801399 @default.
- W4328104974 hasConcept C173163844 @default.
- W4328104974 hasConcept C205372480 @default.
- W4328104974 hasConcept C41008148 @default.
- W4328104974 hasConcept C50644808 @default.
- W4328104974 hasConcept C52622490 @default.
- W4328104974 hasConcept C62520636 @default.
- W4328104974 hasConcept C66322947 @default.
- W4328104974 hasConcept C81363708 @default.
- W4328104974 hasConceptScore W4328104974C101738243 @default.
- W4328104974 hasConceptScore W4328104974C121332964 @default.
- W4328104974 hasConceptScore W4328104974C153180895 @default.
- W4328104974 hasConceptScore W4328104974C154945302 @default.
- W4328104974 hasConceptScore W4328104974C159078339 @default.
- W4328104974 hasConceptScore W4328104974C165801399 @default.
- W4328104974 hasConceptScore W4328104974C173163844 @default.
- W4328104974 hasConceptScore W4328104974C205372480 @default.
- W4328104974 hasConceptScore W4328104974C41008148 @default.
- W4328104974 hasConceptScore W4328104974C50644808 @default.