Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328105748> ?p ?o ?g. }
- W4328105748 endingPage "3977" @default.
- W4328105748 startingPage "3977" @default.
- W4328105748 abstract "Autonomous vehicles require in-depth knowledge of their surroundings, making path segmentation and object detection crucial for determining the feasible region for path planning. Uniform characteristics of a road portion can be denoted by segmentations. Currently, road segmentation techniques mostly depend on the quality of camera images under different lighting conditions. However, Light Detection and Ranging (LiDAR) sensors can provide extremely precise 3D geometry information about the surroundings, leading to increased accuracy with increased memory consumption and computational overhead. This paper introduces a novel methodology which combines LiDAR and camera data for road detection, bridging the gap between 3D LiDAR Point Clouds (PCs). The assignment of semantic labels to 3D points is essential in various fields, including remote sensing, autonomous vehicles, and computer vision. This research discusses how to select the most relevant geometric features for path planning and improve autonomous navigation. An automatic framework for Semantic Segmentation (SS) is introduced, consisting of four processes: selecting neighborhoods, extracting classification features, and selecting features. The aim is to make the various components usable for end users without specialized knowledge by considering simplicity, effectiveness, and reproducibility. Through an extensive evaluation of different neighborhoods, geometric features, feature selection methods, classifiers, and benchmark datasets, the outcomes show that selecting the appropriate neighborhoods significantly develops 3D path segmentation. Additionally, selecting the right feature subsets can reduce computation time, memory usage, and enhance the quality of the results." @default.
- W4328105748 created "2023-03-22" @default.
- W4328105748 creator A5007771278 @default.
- W4328105748 creator A5019877870 @default.
- W4328105748 creator A5030837098 @default.
- W4328105748 creator A5074975613 @default.
- W4328105748 date "2023-03-21" @default.
- W4328105748 modified "2023-10-04" @default.
- W4328105748 title "Path Segmentation from Point Cloud Data for Autonomous Navigation" @default.
- W4328105748 cites W137456267 @default.
- W4328105748 cites W2051094394 @default.
- W4328105748 cites W2086312876 @default.
- W4328105748 cites W2099346911 @default.
- W4328105748 cites W2143110079 @default.
- W4328105748 cites W2153602152 @default.
- W4328105748 cites W2159213092 @default.
- W4328105748 cites W2257536856 @default.
- W4328105748 cites W2487415231 @default.
- W4328105748 cites W2523536562 @default.
- W4328105748 cites W2783963507 @default.
- W4328105748 cites W2887869984 @default.
- W4328105748 cites W2888874480 @default.
- W4328105748 cites W2906764419 @default.
- W4328105748 cites W2954066513 @default.
- W4328105748 cites W2959771705 @default.
- W4328105748 cites W2963815618 @default.
- W4328105748 cites W2986129999 @default.
- W4328105748 cites W3021571323 @default.
- W4328105748 cites W3099155473 @default.
- W4328105748 cites W3115879670 @default.
- W4328105748 cites W3122412340 @default.
- W4328105748 cites W3125842443 @default.
- W4328105748 cites W3142941044 @default.
- W4328105748 cites W3154804936 @default.
- W4328105748 cites W3156100009 @default.
- W4328105748 cites W4206398307 @default.
- W4328105748 cites W4210555396 @default.
- W4328105748 cites W4211234312 @default.
- W4328105748 cites W4225279081 @default.
- W4328105748 cites W4229066299 @default.
- W4328105748 cites W4309089854 @default.
- W4328105748 cites W4313584421 @default.
- W4328105748 cites W4313889431 @default.
- W4328105748 cites W4317038436 @default.
- W4328105748 cites W4323047476 @default.
- W4328105748 doi "https://doi.org/10.3390/app13063977" @default.
- W4328105748 hasPublicationYear "2023" @default.
- W4328105748 type Work @default.
- W4328105748 citedByCount "1" @default.
- W4328105748 countsByYear W43281057482023 @default.
- W4328105748 crossrefType "journal-article" @default.
- W4328105748 hasAuthorship W4328105748A5007771278 @default.
- W4328105748 hasAuthorship W4328105748A5019877870 @default.
- W4328105748 hasAuthorship W4328105748A5030837098 @default.
- W4328105748 hasAuthorship W4328105748A5074975613 @default.
- W4328105748 hasBestOaLocation W43281057481 @default.
- W4328105748 hasConcept C131979681 @default.
- W4328105748 hasConcept C136764020 @default.
- W4328105748 hasConcept C138885662 @default.
- W4328105748 hasConcept C154945302 @default.
- W4328105748 hasConcept C199360897 @default.
- W4328105748 hasConcept C205649164 @default.
- W4328105748 hasConcept C2776151529 @default.
- W4328105748 hasConcept C2776401178 @default.
- W4328105748 hasConcept C2777735758 @default.
- W4328105748 hasConcept C2780615836 @default.
- W4328105748 hasConcept C31972630 @default.
- W4328105748 hasConcept C41008148 @default.
- W4328105748 hasConcept C41895202 @default.
- W4328105748 hasConcept C51399673 @default.
- W4328105748 hasConcept C62649853 @default.
- W4328105748 hasConcept C89600930 @default.
- W4328105748 hasConceptScore W4328105748C131979681 @default.
- W4328105748 hasConceptScore W4328105748C136764020 @default.
- W4328105748 hasConceptScore W4328105748C138885662 @default.
- W4328105748 hasConceptScore W4328105748C154945302 @default.
- W4328105748 hasConceptScore W4328105748C199360897 @default.
- W4328105748 hasConceptScore W4328105748C205649164 @default.
- W4328105748 hasConceptScore W4328105748C2776151529 @default.
- W4328105748 hasConceptScore W4328105748C2776401178 @default.
- W4328105748 hasConceptScore W4328105748C2777735758 @default.
- W4328105748 hasConceptScore W4328105748C2780615836 @default.
- W4328105748 hasConceptScore W4328105748C31972630 @default.
- W4328105748 hasConceptScore W4328105748C41008148 @default.
- W4328105748 hasConceptScore W4328105748C41895202 @default.
- W4328105748 hasConceptScore W4328105748C51399673 @default.
- W4328105748 hasConceptScore W4328105748C62649853 @default.
- W4328105748 hasConceptScore W4328105748C89600930 @default.
- W4328105748 hasIssue "6" @default.
- W4328105748 hasLocation W43281057481 @default.
- W4328105748 hasOpenAccess W4328105748 @default.
- W4328105748 hasPrimaryLocation W43281057481 @default.
- W4328105748 hasRelatedWork W1669643531 @default.
- W4328105748 hasRelatedWork W2005437358 @default.
- W4328105748 hasRelatedWork W2008656436 @default.
- W4328105748 hasRelatedWork W2517104666 @default.
- W4328105748 hasRelatedWork W2613186388 @default.
- W4328105748 hasRelatedWork W2976989770 @default.