Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328106227> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4328106227 endingPage "119896" @default.
- W4328106227 startingPage "119896" @default.
- W4328106227 abstract "Asynchronous Federated Learning (AFL) has been introduced to improve the efficiency of FL by reducing the latency of Machine Learning (ML) model aggregation, particularly in the Internet of Things (IoT) environment. Meanwhile, decentralized FL, such as leveraging blockchain and directed acyclic graph (DAG)-based ledgers, also has drawn much attention to the integration of FL owing to the security benefit against single-point-failure and Byzantine fault tolerant consensus. We observe that the inherent network asynchrony of DAG-based ledgers is beneficial for implementing asynchronous FL particularly in edge computing domains, even though there is no existing survey work that provides a fundamental overview of such integration. This paper surveys on the integration of asynchronous FL with DAG, which we call AFL-DAG, as a promising approach to realize the intersection of decentralized FL and asynchronous FL. Motivated by the lack of a concrete taxonomy of asynchronous FL and a global model, especially with decentralized FL, we introduce universally applicable terminologies and the extensive classification method of FL in terms of asynchrony. Based on the proposed taxonomy, we present a generic system model of AFL-DAG for edge computing applications. To provide a horizontal overview and cover fundamental concepts in AFL-DAG, we identify four critical design factors and the state-of-the-art solutions are discussed accordingly. Future directions to achieve a practical AFL-DAG are also highlighted. Finally, we explore the opportunities of AFL-DAG by investigating a popular edge computing application, the on-device crowdsourcing, and provide a high-level evaluation of AFL-DAG compared to blockchained-FL." @default.
- W4328106227 created "2023-03-22" @default.
- W4328106227 creator A5004180353 @default.
- W4328106227 creator A5005457271 @default.
- W4328106227 creator A5018804787 @default.
- W4328106227 creator A5040158743 @default.
- W4328106227 creator A5084778462 @default.
- W4328106227 date "2023-08-01" @default.
- W4328106227 modified "2023-10-14" @default.
- W4328106227 title "Asynchronous federated learning with directed acyclic graph-based blockchain in edge computing: Overview, design, and challenges" @default.
- W4328106227 cites W2245160765 @default.
- W4328106227 cites W2887817291 @default.
- W4328106227 cites W2951832089 @default.
- W4328106227 cites W2989120265 @default.
- W4328106227 cites W3006655855 @default.
- W4328106227 cites W3015636663 @default.
- W4328106227 cites W3030742901 @default.
- W4328106227 cites W3048295601 @default.
- W4328106227 cites W3095540342 @default.
- W4328106227 cites W3101718285 @default.
- W4328106227 cites W3106416029 @default.
- W4328106227 cites W3156226702 @default.
- W4328106227 cites W3168496996 @default.
- W4328106227 cites W3175168574 @default.
- W4328106227 cites W3179212946 @default.
- W4328106227 cites W3184000577 @default.
- W4328106227 cites W3208693455 @default.
- W4328106227 cites W3213307153 @default.
- W4328106227 doi "https://doi.org/10.1016/j.eswa.2023.119896" @default.
- W4328106227 hasPublicationYear "2023" @default.
- W4328106227 type Work @default.
- W4328106227 citedByCount "2" @default.
- W4328106227 countsByYear W43281062272023 @default.
- W4328106227 crossrefType "journal-article" @default.
- W4328106227 hasAuthorship W4328106227A5004180353 @default.
- W4328106227 hasAuthorship W4328106227A5005457271 @default.
- W4328106227 hasAuthorship W4328106227A5018804787 @default.
- W4328106227 hasAuthorship W4328106227A5040158743 @default.
- W4328106227 hasAuthorship W4328106227A5084778462 @default.
- W4328106227 hasConcept C11413529 @default.
- W4328106227 hasConcept C115903868 @default.
- W4328106227 hasConcept C120314980 @default.
- W4328106227 hasConcept C151319957 @default.
- W4328106227 hasConcept C26713055 @default.
- W4328106227 hasConcept C2779019669 @default.
- W4328106227 hasConcept C31258907 @default.
- W4328106227 hasConcept C41008148 @default.
- W4328106227 hasConcept C74197172 @default.
- W4328106227 hasConcept C80444323 @default.
- W4328106227 hasConceptScore W4328106227C11413529 @default.
- W4328106227 hasConceptScore W4328106227C115903868 @default.
- W4328106227 hasConceptScore W4328106227C120314980 @default.
- W4328106227 hasConceptScore W4328106227C151319957 @default.
- W4328106227 hasConceptScore W4328106227C26713055 @default.
- W4328106227 hasConceptScore W4328106227C2779019669 @default.
- W4328106227 hasConceptScore W4328106227C31258907 @default.
- W4328106227 hasConceptScore W4328106227C41008148 @default.
- W4328106227 hasConceptScore W4328106227C74197172 @default.
- W4328106227 hasConceptScore W4328106227C80444323 @default.
- W4328106227 hasFunder F4320322120 @default.
- W4328106227 hasFunder F4320322349 @default.
- W4328106227 hasLocation W43281062271 @default.
- W4328106227 hasOpenAccess W4328106227 @default.
- W4328106227 hasPrimaryLocation W43281062271 @default.
- W4328106227 hasRelatedWork W1748496945 @default.
- W4328106227 hasRelatedWork W2033005483 @default.
- W4328106227 hasRelatedWork W2144172854 @default.
- W4328106227 hasRelatedWork W2165838660 @default.
- W4328106227 hasRelatedWork W2168346544 @default.
- W4328106227 hasRelatedWork W2364921833 @default.
- W4328106227 hasRelatedWork W2534721765 @default.
- W4328106227 hasRelatedWork W2963554287 @default.
- W4328106227 hasRelatedWork W4313533643 @default.
- W4328106227 hasRelatedWork W3022658242 @default.
- W4328106227 hasVolume "223" @default.
- W4328106227 isParatext "false" @default.
- W4328106227 isRetracted "false" @default.
- W4328106227 workType "article" @default.