Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328107772> ?p ?o ?g. }
- W4328107772 endingPage "1224" @default.
- W4328107772 startingPage "1205" @default.
- W4328107772 abstract "Abstract Purpose Computational text mining methods are proposed as a useful methodological innovation in Intimate Partner Violence (IPV) research. Text mining can offer researchers access to existing or new datasets, sourced from social media or from IPV-related organisations, that would be too large to analyse manually. This article aims to give an overview of current work applying text mining methodologies in the study of IPV, as a starting point for researchers wanting to use such methods in their own work. Methods This article reports the results of a systematic review of academic research using computational text mining to research IPV. A review protocol was developed according to PRISMA guidelines, and a literature search of 8 databases was conducted, identifying 22 unique studies that were included in the review. Results The included studies cover a wide range of methodologies and outcomes. Supervised and unsupervised approaches are represented, including rule-based classification ( n = 3), traditional Machine Learning ( n = 8), Deep Learning ( n = 6) and topic modelling ( n = 4) methods. Datasets are mostly sourced from social media ( n = 15), with other data being sourced from police forces ( n = 3), health or social care providers ( n = 3), or litigation texts ( n = 1). Evaluation methods mostly used a held-out, labelled test set, or k-fold Cross Validation, with Accuracy and F1 metrics reported. Only a few studies commented on the ethics of computational IPV research. Conclusions Text mining methodologies offer promising data collection and analysis techniques for IPV research. Future work in this space must consider ethical implications of computational approaches." @default.
- W4328107772 created "2023-03-22" @default.
- W4328107772 creator A5016499974 @default.
- W4328107772 creator A5044603466 @default.
- W4328107772 creator A5052775075 @default.
- W4328107772 creator A5057978586 @default.
- W4328107772 date "2023-03-21" @default.
- W4328107772 modified "2023-09-30" @default.
- W4328107772 title "A Systematic Literature Review of the Use of Computational Text Analysis Methods in Intimate Partner Violence Research" @default.
- W4328107772 cites W1545751019 @default.
- W4328107772 cites W1574074180 @default.
- W4328107772 cites W2003823122 @default.
- W4328107772 cites W2050674407 @default.
- W4328107772 cites W2073695032 @default.
- W4328107772 cites W2124178006 @default.
- W4328107772 cites W2141574787 @default.
- W4328107772 cites W2151470298 @default.
- W4328107772 cites W2155243985 @default.
- W4328107772 cites W2157141579 @default.
- W4328107772 cites W2161374186 @default.
- W4328107772 cites W2171559078 @default.
- W4328107772 cites W2250595267 @default.
- W4328107772 cites W2409811014 @default.
- W4328107772 cites W2419499132 @default.
- W4328107772 cites W2533849647 @default.
- W4328107772 cites W2560438049 @default.
- W4328107772 cites W2602920895 @default.
- W4328107772 cites W2775336929 @default.
- W4328107772 cites W2783420512 @default.
- W4328107772 cites W2804000861 @default.
- W4328107772 cites W2887782043 @default.
- W4328107772 cites W2892090722 @default.
- W4328107772 cites W2901724277 @default.
- W4328107772 cites W2902634493 @default.
- W4328107772 cites W2904722350 @default.
- W4328107772 cites W2904937466 @default.
- W4328107772 cites W2911489562 @default.
- W4328107772 cites W2911936887 @default.
- W4328107772 cites W2915009443 @default.
- W4328107772 cites W2917157846 @default.
- W4328107772 cites W2936331919 @default.
- W4328107772 cites W2954479967 @default.
- W4328107772 cites W2963520580 @default.
- W4328107772 cites W2963806078 @default.
- W4328107772 cites W2966948400 @default.
- W4328107772 cites W2973230187 @default.
- W4328107772 cites W2987512215 @default.
- W4328107772 cites W2996009720 @default.
- W4328107772 cites W2999448772 @default.
- W4328107772 cites W3017530169 @default.
- W4328107772 cites W3045743170 @default.
- W4328107772 cites W3083761739 @default.
- W4328107772 cites W3096925471 @default.
- W4328107772 cites W3107826394 @default.
- W4328107772 cites W3125136233 @default.
- W4328107772 cites W3131423379 @default.
- W4328107772 cites W3131667485 @default.
- W4328107772 cites W3164287277 @default.
- W4328107772 cites W3174057511 @default.
- W4328107772 cites W3182609443 @default.
- W4328107772 cites W3203269128 @default.
- W4328107772 cites W3208674021 @default.
- W4328107772 cites W3215074405 @default.
- W4328107772 cites W4206004134 @default.
- W4328107772 cites W4207056546 @default.
- W4328107772 cites W4210264849 @default.
- W4328107772 cites W4211177538 @default.
- W4328107772 cites W4213224678 @default.
- W4328107772 cites W4294214797 @default.
- W4328107772 doi "https://doi.org/10.1007/s10896-023-00517-7" @default.
- W4328107772 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37358974" @default.
- W4328107772 hasPublicationYear "2023" @default.
- W4328107772 type Work @default.
- W4328107772 citedByCount "2" @default.
- W4328107772 countsByYear W43281077722023 @default.
- W4328107772 crossrefType "journal-article" @default.
- W4328107772 hasAuthorship W4328107772A5016499974 @default.
- W4328107772 hasAuthorship W4328107772A5044603466 @default.
- W4328107772 hasAuthorship W4328107772A5052775075 @default.
- W4328107772 hasAuthorship W4328107772A5057978586 @default.
- W4328107772 hasBestOaLocation W43281077721 @default.
- W4328107772 hasConcept C124101348 @default.
- W4328107772 hasConcept C136764020 @default.
- W4328107772 hasConcept C142724271 @default.
- W4328107772 hasConcept C143515210 @default.
- W4328107772 hasConcept C15744967 @default.
- W4328107772 hasConcept C166735990 @default.
- W4328107772 hasConcept C177264268 @default.
- W4328107772 hasConcept C17744445 @default.
- W4328107772 hasConcept C189708586 @default.
- W4328107772 hasConcept C199360897 @default.
- W4328107772 hasConcept C199539241 @default.
- W4328107772 hasConcept C204787440 @default.
- W4328107772 hasConcept C23123220 @default.
- W4328107772 hasConcept C2522767166 @default.
- W4328107772 hasConcept C2779473830 @default.
- W4328107772 hasConcept C2780385302 @default.
- W4328107772 hasConcept C3017944768 @default.