Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328108216> ?p ?o ?g. }
- W4328108216 endingPage "103971" @default.
- W4328108216 startingPage "103971" @default.
- W4328108216 abstract "The classification of medical images is an important priority for clinical research and helps to improve the diagnosis of various disorders. This work aims to classify the neuroradiological features of patients with Alzheimer's disease (AD) using an automatic hand-modeled method with high accuracy.This work uses two (private and public) datasets. The private dataset consists of 3807 magnetic resonance imaging (MRI) and computer tomography (CT) images belonging to two (normal and AD) classes. The second public (Kaggle AD) dataset contains 6400 MR images. The presented classification model comprises three fundamental phases: feature extraction using an exemplar hybrid feature extractor, neighborhood component analysis-based feature selection, and classification utilizing eight different classifiers. The novelty of this model is feature extraction. Vision transformers inspire this phase, and hence 16 exemplars are generated. Histogram-oriented gradients (HOG), local binary pattern (LBP) and local phase quantization (LPQ) feature extraction functions have been applied to each exemplar/patch and raw brain image. Finally, the created features are merged, and the best features are selected using neighborhood component analysis (NCA). These features are fed to eight classifiers to obtain highest classification performance using our proposed method. The presented image classification model uses exemplar histogram-based features; hence, it is called ExHiF.We have developed the ExHiF model with a ten-fold cross-validation strategy using two (private and public) datasets with shallow classifiers. We have obtained 100% classification accuracy using cubic support vector machine (CSVM) and fine k nearest neighbor (FkNN) classifiers for both datasets.Our developed model is ready to be validated with more datasets and has the potential to be employed in mental hospitals to assist neurologists in confirming their manual screening of AD using MRI/CT images." @default.
- W4328108216 created "2023-03-22" @default.
- W4328108216 creator A5016221020 @default.
- W4328108216 creator A5029287310 @default.
- W4328108216 creator A5038164079 @default.
- W4328108216 creator A5040772000 @default.
- W4328108216 creator A5045783666 @default.
- W4328108216 creator A5049093311 @default.
- W4328108216 creator A5062153529 @default.
- W4328108216 creator A5076990710 @default.
- W4328108216 date "2023-05-01" @default.
- W4328108216 modified "2023-10-15" @default.
- W4328108216 title "ExHiF: Alzheimer's disease detection using exemplar histogram-based features with CT and MR images" @default.
- W4328108216 cites W1747781838 @default.
- W4328108216 cites W1982811058 @default.
- W4328108216 cites W2010607123 @default.
- W4328108216 cites W2049000361 @default.
- W4328108216 cites W2065338300 @default.
- W4328108216 cites W2094732273 @default.
- W4328108216 cites W2115017507 @default.
- W4328108216 cites W2163352848 @default.
- W4328108216 cites W2167720733 @default.
- W4328108216 cites W2174515233 @default.
- W4328108216 cites W2618530766 @default.
- W4328108216 cites W2884281122 @default.
- W4328108216 cites W2968726102 @default.
- W4328108216 cites W2995183059 @default.
- W4328108216 cites W3011893870 @default.
- W4328108216 cites W3014251530 @default.
- W4328108216 cites W3082820154 @default.
- W4328108216 cites W3092742617 @default.
- W4328108216 cites W3115292829 @default.
- W4328108216 cites W3115324042 @default.
- W4328108216 cites W3121966255 @default.
- W4328108216 cites W3131390313 @default.
- W4328108216 cites W3146208981 @default.
- W4328108216 cites W3152970886 @default.
- W4328108216 cites W3173195087 @default.
- W4328108216 cites W3197857423 @default.
- W4328108216 cites W3202497562 @default.
- W4328108216 cites W4211036635 @default.
- W4328108216 cites W4211156109 @default.
- W4328108216 cites W4211208097 @default.
- W4328108216 cites W4291002587 @default.
- W4328108216 cites W4297399257 @default.
- W4328108216 cites W4311989254 @default.
- W4328108216 cites W4313825903 @default.
- W4328108216 doi "https://doi.org/10.1016/j.medengphy.2023.103971" @default.
- W4328108216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37120169" @default.
- W4328108216 hasPublicationYear "2023" @default.
- W4328108216 type Work @default.
- W4328108216 citedByCount "5" @default.
- W4328108216 countsByYear W43281082162023 @default.
- W4328108216 crossrefType "journal-article" @default.
- W4328108216 hasAuthorship W4328108216A5016221020 @default.
- W4328108216 hasAuthorship W4328108216A5029287310 @default.
- W4328108216 hasAuthorship W4328108216A5038164079 @default.
- W4328108216 hasAuthorship W4328108216A5040772000 @default.
- W4328108216 hasAuthorship W4328108216A5045783666 @default.
- W4328108216 hasAuthorship W4328108216A5049093311 @default.
- W4328108216 hasAuthorship W4328108216A5062153529 @default.
- W4328108216 hasAuthorship W4328108216A5076990710 @default.
- W4328108216 hasConcept C115961682 @default.
- W4328108216 hasConcept C12267149 @default.
- W4328108216 hasConcept C138885662 @default.
- W4328108216 hasConcept C153180895 @default.
- W4328108216 hasConcept C154945302 @default.
- W4328108216 hasConcept C17426736 @default.
- W4328108216 hasConcept C2776401178 @default.
- W4328108216 hasConcept C41008148 @default.
- W4328108216 hasConcept C41895202 @default.
- W4328108216 hasConcept C52622490 @default.
- W4328108216 hasConcept C53533937 @default.
- W4328108216 hasConcept C83665646 @default.
- W4328108216 hasConcept C87335442 @default.
- W4328108216 hasConcept C95623464 @default.
- W4328108216 hasConceptScore W4328108216C115961682 @default.
- W4328108216 hasConceptScore W4328108216C12267149 @default.
- W4328108216 hasConceptScore W4328108216C138885662 @default.
- W4328108216 hasConceptScore W4328108216C153180895 @default.
- W4328108216 hasConceptScore W4328108216C154945302 @default.
- W4328108216 hasConceptScore W4328108216C17426736 @default.
- W4328108216 hasConceptScore W4328108216C2776401178 @default.
- W4328108216 hasConceptScore W4328108216C41008148 @default.
- W4328108216 hasConceptScore W4328108216C41895202 @default.
- W4328108216 hasConceptScore W4328108216C52622490 @default.
- W4328108216 hasConceptScore W4328108216C53533937 @default.
- W4328108216 hasConceptScore W4328108216C83665646 @default.
- W4328108216 hasConceptScore W4328108216C87335442 @default.
- W4328108216 hasConceptScore W4328108216C95623464 @default.
- W4328108216 hasLocation W43281082161 @default.
- W4328108216 hasLocation W43281082162 @default.
- W4328108216 hasOpenAccess W4328108216 @default.
- W4328108216 hasPrimaryLocation W43281082161 @default.
- W4328108216 hasRelatedWork W1956990547 @default.
- W4328108216 hasRelatedWork W2020430625 @default.
- W4328108216 hasRelatedWork W2044065526 @default.
- W4328108216 hasRelatedWork W2049095871 @default.