Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328108640> ?p ?o ?g. }
- W4328108640 endingPage "102797" @default.
- W4328108640 startingPage "102797" @default.
- W4328108640 abstract "Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyze this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans. To improve the performance of the Att-Unet architecture and maximize the use of the Attention Gate, we propose the PAtt-Unet and DAtt-Unet architectures. PAtt-Unet aims to exploit the input pyramids to preserve the spatial awareness in all of the encoder layers. On the other hand, DAtt-Unet is designed to guide the segmentation of Covid-19 infection inside the lung lobes. We also propose to combine these two architectures into a single one, which we refer to as PDAtt-Unet. To overcome the blurry boundary pixels segmentation of Covid-19 infection, we propose a hybrid loss function. The proposed architectures were tested on four datasets with two evaluation scenarios (intra and cross datasets). Experimental results showed that both PAtt-Unet and DAtt-Unet improve the performance of Att-Unet in segmenting Covid-19 infections. Moreover, the combination architecture PDAtt-Unet led to further improvement. To Compare with other methods, three baseline segmentation architectures (Unet, Unet++, and Att-Unet) and three state-of-the-art architectures (InfNet, SCOATNet, and nCoVSegNet) were tested. The comparison showed the superiority of the proposed PDAtt-Unet trained with the proposed hybrid loss (PDEAtt-Unet) over all other methods. Moreover, PDEAtt-Unet is able to overcome various challenges in segmenting Covid-19 infections in four datasets and two evaluation scenarios." @default.
- W4328108640 created "2023-03-22" @default.
- W4328108640 creator A5002571252 @default.
- W4328108640 creator A5042700750 @default.
- W4328108640 creator A5069361114 @default.
- W4328108640 creator A5081042741 @default.
- W4328108640 date "2023-05-01" @default.
- W4328108640 modified "2023-10-11" @default.
- W4328108640 title "PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans" @default.
- W4328108640 cites W2961348656 @default.
- W4328108640 cites W3004790666 @default.
- W4328108640 cites W3006354146 @default.
- W4328108640 cites W3006643024 @default.
- W4328108640 cites W3012211282 @default.
- W4328108640 cites W3020653337 @default.
- W4328108640 cites W3021882509 @default.
- W4328108640 cites W3022095143 @default.
- W4328108640 cites W3024506939 @default.
- W4328108640 cites W3027763298 @default.
- W4328108640 cites W3033272814 @default.
- W4328108640 cites W3112175976 @default.
- W4328108640 cites W3115781494 @default.
- W4328108640 cites W3120935246 @default.
- W4328108640 cites W3123051771 @default.
- W4328108640 cites W3127057363 @default.
- W4328108640 cites W3129581972 @default.
- W4328108640 cites W3133932812 @default.
- W4328108640 cites W3166378522 @default.
- W4328108640 cites W3181578532 @default.
- W4328108640 cites W3186482562 @default.
- W4328108640 cites W3189960127 @default.
- W4328108640 cites W3197119822 @default.
- W4328108640 cites W3199981375 @default.
- W4328108640 cites W3211277071 @default.
- W4328108640 cites W3215835978 @default.
- W4328108640 cites W4205218773 @default.
- W4328108640 cites W4210566286 @default.
- W4328108640 cites W4294740541 @default.
- W4328108640 doi "https://doi.org/10.1016/j.media.2023.102797" @default.
- W4328108640 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36966605" @default.
- W4328108640 hasPublicationYear "2023" @default.
- W4328108640 type Work @default.
- W4328108640 citedByCount "3" @default.
- W4328108640 countsByYear W43281086402023 @default.
- W4328108640 crossrefType "journal-article" @default.
- W4328108640 hasAuthorship W4328108640A5002571252 @default.
- W4328108640 hasAuthorship W4328108640A5042700750 @default.
- W4328108640 hasAuthorship W4328108640A5069361114 @default.
- W4328108640 hasAuthorship W4328108640A5081042741 @default.
- W4328108640 hasBestOaLocation W43281086401 @default.
- W4328108640 hasConcept C111919701 @default.
- W4328108640 hasConcept C118505674 @default.
- W4328108640 hasConcept C142575187 @default.
- W4328108640 hasConcept C142724271 @default.
- W4328108640 hasConcept C153180895 @default.
- W4328108640 hasConcept C154945302 @default.
- W4328108640 hasConcept C2524010 @default.
- W4328108640 hasConcept C2779134260 @default.
- W4328108640 hasConcept C3008058167 @default.
- W4328108640 hasConcept C31972630 @default.
- W4328108640 hasConcept C33923547 @default.
- W4328108640 hasConcept C41008148 @default.
- W4328108640 hasConcept C524204448 @default.
- W4328108640 hasConcept C71924100 @default.
- W4328108640 hasConcept C89600930 @default.
- W4328108640 hasConceptScore W4328108640C111919701 @default.
- W4328108640 hasConceptScore W4328108640C118505674 @default.
- W4328108640 hasConceptScore W4328108640C142575187 @default.
- W4328108640 hasConceptScore W4328108640C142724271 @default.
- W4328108640 hasConceptScore W4328108640C153180895 @default.
- W4328108640 hasConceptScore W4328108640C154945302 @default.
- W4328108640 hasConceptScore W4328108640C2524010 @default.
- W4328108640 hasConceptScore W4328108640C2779134260 @default.
- W4328108640 hasConceptScore W4328108640C3008058167 @default.
- W4328108640 hasConceptScore W4328108640C31972630 @default.
- W4328108640 hasConceptScore W4328108640C33923547 @default.
- W4328108640 hasConceptScore W4328108640C41008148 @default.
- W4328108640 hasConceptScore W4328108640C524204448 @default.
- W4328108640 hasConceptScore W4328108640C71924100 @default.
- W4328108640 hasConceptScore W4328108640C89600930 @default.
- W4328108640 hasLocation W43281086401 @default.
- W4328108640 hasLocation W43281086402 @default.
- W4328108640 hasLocation W43281086403 @default.
- W4328108640 hasOpenAccess W4328108640 @default.
- W4328108640 hasPrimaryLocation W43281086401 @default.
- W4328108640 hasRelatedWork W3035105474 @default.
- W4328108640 hasRelatedWork W3135208316 @default.
- W4328108640 hasRelatedWork W3175450294 @default.
- W4328108640 hasRelatedWork W3179695362 @default.
- W4328108640 hasRelatedWork W3187621644 @default.
- W4328108640 hasRelatedWork W4205413867 @default.
- W4328108640 hasRelatedWork W4205698903 @default.
- W4328108640 hasRelatedWork W4206484822 @default.
- W4328108640 hasRelatedWork W4294968941 @default.
- W4328108640 hasRelatedWork W4382894326 @default.
- W4328108640 hasVolume "86" @default.
- W4328108640 isParatext "false" @default.
- W4328108640 isRetracted "false" @default.