Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328110681> ?p ?o ?g. }
- W4328110681 endingPage "1679" @default.
- W4328110681 startingPage "1679" @default.
- W4328110681 abstract "The low spatial resolution of hyperspectral images means that existing mixed pixels rely heavily on spectral information, making it difficult to differentiate between the target of interest and the background. The endmember extraction method is powerful in enhancing spatial structure information for hyperspectral anomaly detection, whereas most approaches are based on matrix representation, which inevitably destroys the spatial or spectral information. In this paper, we treated the hyperspectral image as a third-order tensor and proposed a novel anomaly detection method based on a low-rank linear mixing model of the scene background. The obtained abundance maps possessed more distinctive features than the raw data, which was beneficial for identifying anomalies in the background. Specifically, the low-rank tensor background was approximated as the mode-3 product of an abundance tensor and endmember matrix. Due to the distinctive features of the background’s abundance maps, we characterized them by tensor regularization and imposed low rankness through CP decomposition, smoothness, and sparsity. In addition, we utilized the ℓ1,1,2-norm to characterize the tube-wise sparsity of the anomaly, since it accounted for a small portion of the scene. The experimental results obtained using five real datasets demonstrated the outstanding performance of our proposed method." @default.
- W4328110681 created "2023-03-22" @default.
- W4328110681 creator A5024890303 @default.
- W4328110681 creator A5031361250 @default.
- W4328110681 creator A5050760333 @default.
- W4328110681 creator A5065362562 @default.
- W4328110681 creator A5070343691 @default.
- W4328110681 creator A5083472995 @default.
- W4328110681 date "2023-03-20" @default.
- W4328110681 modified "2023-10-17" @default.
- W4328110681 title "Hyperspectral Anomaly Detection Based on Regularized Background Abundance Tensor Decomposition" @default.
- W4328110681 cites W1613158815 @default.
- W4328110681 cites W1902027874 @default.
- W4328110681 cites W2004491663 @default.
- W4328110681 cites W2005089986 @default.
- W4328110681 cites W2017014096 @default.
- W4328110681 cites W2024165284 @default.
- W4328110681 cites W2024288510 @default.
- W4328110681 cites W2040078680 @default.
- W4328110681 cites W2047870694 @default.
- W4328110681 cites W2067897118 @default.
- W4328110681 cites W2070424424 @default.
- W4328110681 cites W2086506050 @default.
- W4328110681 cites W2087263574 @default.
- W4328110681 cites W2089298795 @default.
- W4328110681 cites W2097381359 @default.
- W4328110681 cites W2115366158 @default.
- W4328110681 cites W2124463804 @default.
- W4328110681 cites W2149463972 @default.
- W4328110681 cites W2163129097 @default.
- W4328110681 cites W2288752886 @default.
- W4328110681 cites W2295576075 @default.
- W4328110681 cites W2566771666 @default.
- W4328110681 cites W2604977491 @default.
- W4328110681 cites W2625894731 @default.
- W4328110681 cites W2791928749 @default.
- W4328110681 cites W2796629918 @default.
- W4328110681 cites W2804744787 @default.
- W4328110681 cites W2896057526 @default.
- W4328110681 cites W2919868964 @default.
- W4328110681 cites W2964179170 @default.
- W4328110681 cites W2972480129 @default.
- W4328110681 cites W2988137070 @default.
- W4328110681 cites W2990670912 @default.
- W4328110681 cites W2991135466 @default.
- W4328110681 cites W2999536074 @default.
- W4328110681 cites W3008789903 @default.
- W4328110681 cites W3008839601 @default.
- W4328110681 cites W3028138626 @default.
- W4328110681 cites W3037306899 @default.
- W4328110681 cites W3038851053 @default.
- W4328110681 cites W3087883793 @default.
- W4328110681 cites W3103872874 @default.
- W4328110681 cites W3112037842 @default.
- W4328110681 cites W3118889207 @default.
- W4328110681 cites W3153686193 @default.
- W4328110681 cites W3171243408 @default.
- W4328110681 cites W3173675588 @default.
- W4328110681 cites W3205538325 @default.
- W4328110681 cites W4200272877 @default.
- W4328110681 cites W4210330613 @default.
- W4328110681 cites W4221059680 @default.
- W4328110681 cites W4285059828 @default.
- W4328110681 cites W4312513332 @default.
- W4328110681 doi "https://doi.org/10.3390/rs15061679" @default.
- W4328110681 hasPublicationYear "2023" @default.
- W4328110681 type Work @default.
- W4328110681 citedByCount "3" @default.
- W4328110681 countsByYear W43281106812023 @default.
- W4328110681 crossrefType "journal-article" @default.
- W4328110681 hasAuthorship W4328110681A5024890303 @default.
- W4328110681 hasAuthorship W4328110681A5031361250 @default.
- W4328110681 hasAuthorship W4328110681A5050760333 @default.
- W4328110681 hasAuthorship W4328110681A5065362562 @default.
- W4328110681 hasAuthorship W4328110681A5070343691 @default.
- W4328110681 hasAuthorship W4328110681A5083472995 @default.
- W4328110681 hasBestOaLocation W43281106811 @default.
- W4328110681 hasConcept C121332964 @default.
- W4328110681 hasConcept C153180895 @default.
- W4328110681 hasConcept C154945302 @default.
- W4328110681 hasConcept C155281189 @default.
- W4328110681 hasConcept C158693339 @default.
- W4328110681 hasConcept C159078339 @default.
- W4328110681 hasConcept C160633673 @default.
- W4328110681 hasConcept C202444582 @default.
- W4328110681 hasConcept C2776135515 @default.
- W4328110681 hasConcept C33923547 @default.
- W4328110681 hasConcept C41008148 @default.
- W4328110681 hasConcept C42355184 @default.
- W4328110681 hasConcept C58237817 @default.
- W4328110681 hasConcept C62520636 @default.
- W4328110681 hasConcept C739882 @default.
- W4328110681 hasConceptScore W4328110681C121332964 @default.
- W4328110681 hasConceptScore W4328110681C153180895 @default.
- W4328110681 hasConceptScore W4328110681C154945302 @default.
- W4328110681 hasConceptScore W4328110681C155281189 @default.
- W4328110681 hasConceptScore W4328110681C158693339 @default.
- W4328110681 hasConceptScore W4328110681C159078339 @default.