Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328110731> ?p ?o ?g. }
- W4328110731 endingPage "2878" @default.
- W4328110731 startingPage "2878" @default.
- W4328110731 abstract "Accurate short-term load forecasting is of great significance to the safe and stable operation of power systems and the development of the power market. Most existing studies apply deep learning models to make predictions considering only one feature or temporal relationship in load time series. Therefore, to obtain an accurate and reliable prediction result, a hybrid prediction model combining a dual-stage attention mechanism (DA), crisscross grey wolf optimizer (CS-GWO) and bidirectional gated recurrent unit (BiGRU) is proposed in this paper. DA is introduced on the input side of the model to improve the sensitivity of the model to key features and information at key time points simultaneously. CS-GWO is formed by combining the horizontal and vertical crossover operators, to enhance the global search ability and the diversity of the population of GWO. Meanwhile, BiGRU is optimized by CS-GWO to accelerate the convergence of the model. Finally, a collected load dataset, four evaluation metrics and parametric and non-parametric testing manners are used to evaluate the proposed CS-GWO-DA-BiGRU short-term load prediction model. The experimental results show that the RMSE, MAE and SMAPE are reduced respectively by 3.86%, 1.37% and 0.30% of those of the second-best performing CSO-DA-BiGRU model, which demonstrates that the proposed model can better fit the load data and achieve better prediction results." @default.
- W4328110731 created "2023-03-22" @default.
- W4328110731 creator A5030034440 @default.
- W4328110731 creator A5047075892 @default.
- W4328110731 date "2023-03-21" @default.
- W4328110731 modified "2023-10-05" @default.
- W4328110731 title "A Short-Term Load Forecasting Model Based on Crisscross Grey Wolf Optimizer and Dual-Stage Attention Mechanism" @default.
- W4328110731 cites W1553802819 @default.
- W4328110731 cites W1796315384 @default.
- W4328110731 cites W1979373126 @default.
- W4328110731 cites W2014743688 @default.
- W4328110731 cites W2067543652 @default.
- W4328110731 cites W2074838602 @default.
- W4328110731 cites W2096166399 @default.
- W4328110731 cites W2292129691 @default.
- W4328110731 cites W2583955450 @default.
- W4328110731 cites W2601608246 @default.
- W4328110731 cites W2601642459 @default.
- W4328110731 cites W2611767272 @default.
- W4328110731 cites W2726592172 @default.
- W4328110731 cites W2809317444 @default.
- W4328110731 cites W2905484288 @default.
- W4328110731 cites W2917883546 @default.
- W4328110731 cites W2921685418 @default.
- W4328110731 cites W2922329508 @default.
- W4328110731 cites W2960789518 @default.
- W4328110731 cites W2995860668 @default.
- W4328110731 cites W3004665554 @default.
- W4328110731 cites W3017691321 @default.
- W4328110731 cites W3020569291 @default.
- W4328110731 cites W3033067191 @default.
- W4328110731 cites W3043685378 @default.
- W4328110731 cites W3082520635 @default.
- W4328110731 cites W3090661556 @default.
- W4328110731 cites W3126238986 @default.
- W4328110731 cites W3133841585 @default.
- W4328110731 cites W3136460081 @default.
- W4328110731 cites W3172703507 @default.
- W4328110731 cites W3196068745 @default.
- W4328110731 cites W3196661916 @default.
- W4328110731 cites W3200680133 @default.
- W4328110731 cites W4206680344 @default.
- W4328110731 cites W4226338062 @default.
- W4328110731 cites W4283743430 @default.
- W4328110731 cites W4285794136 @default.
- W4328110731 cites W4292995070 @default.
- W4328110731 cites W4296021822 @default.
- W4328110731 cites W4303474662 @default.
- W4328110731 cites W4313426938 @default.
- W4328110731 cites W4313584902 @default.
- W4328110731 cites W4313646203 @default.
- W4328110731 cites W4318473895 @default.
- W4328110731 cites W4318832288 @default.
- W4328110731 cites W4319595422 @default.
- W4328110731 cites W4323922821 @default.
- W4328110731 doi "https://doi.org/10.3390/en16062878" @default.
- W4328110731 hasPublicationYear "2023" @default.
- W4328110731 type Work @default.
- W4328110731 citedByCount "4" @default.
- W4328110731 countsByYear W43281107312023 @default.
- W4328110731 crossrefType "journal-article" @default.
- W4328110731 hasAuthorship W4328110731A5030034440 @default.
- W4328110731 hasAuthorship W4328110731A5047075892 @default.
- W4328110731 hasBestOaLocation W43281107311 @default.
- W4328110731 hasConcept C105795698 @default.
- W4328110731 hasConcept C117251300 @default.
- W4328110731 hasConcept C121332964 @default.
- W4328110731 hasConcept C122507166 @default.
- W4328110731 hasConcept C124952713 @default.
- W4328110731 hasConcept C138885662 @default.
- W4328110731 hasConcept C142362112 @default.
- W4328110731 hasConcept C144024400 @default.
- W4328110731 hasConcept C149923435 @default.
- W4328110731 hasConcept C154945302 @default.
- W4328110731 hasConcept C162324750 @default.
- W4328110731 hasConcept C26517878 @default.
- W4328110731 hasConcept C2776401178 @default.
- W4328110731 hasConcept C2777303404 @default.
- W4328110731 hasConcept C2780980858 @default.
- W4328110731 hasConcept C2908647359 @default.
- W4328110731 hasConcept C33923547 @default.
- W4328110731 hasConcept C38652104 @default.
- W4328110731 hasConcept C41008148 @default.
- W4328110731 hasConcept C41895202 @default.
- W4328110731 hasConcept C50522688 @default.
- W4328110731 hasConcept C61797465 @default.
- W4328110731 hasConcept C62520636 @default.
- W4328110731 hasConceptScore W4328110731C105795698 @default.
- W4328110731 hasConceptScore W4328110731C117251300 @default.
- W4328110731 hasConceptScore W4328110731C121332964 @default.
- W4328110731 hasConceptScore W4328110731C122507166 @default.
- W4328110731 hasConceptScore W4328110731C124952713 @default.
- W4328110731 hasConceptScore W4328110731C138885662 @default.
- W4328110731 hasConceptScore W4328110731C142362112 @default.
- W4328110731 hasConceptScore W4328110731C144024400 @default.
- W4328110731 hasConceptScore W4328110731C149923435 @default.
- W4328110731 hasConceptScore W4328110731C154945302 @default.
- W4328110731 hasConceptScore W4328110731C162324750 @default.