Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328111504> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4328111504 endingPage "5211" @default.
- W4328111504 startingPage "5211" @default.
- W4328111504 abstract "Aim. To develop and evaluate the effectiveness of models for predicting mortality after coronary bypass surgery, obtained using machine learning analysis of preoperative data. Material and methods . As part of a cohort study, a retrospective prediction of in-hospital mortality after coronary artery bypass grafting (CABG) was performed in 2182 patients with stable coronary artery disease. Patients were divided into 2 following samples: learning (80%, n=1745) and training (20%, n=437). The initial ratio of surviving (n=2153) and deceased (n=29) patients in the total sample indicated a pronounced class imbalance, and therefore the resampling method was used in the training sample. Five machine learning (ML) algorithms were used to build predictive risk models: Logistic regression, Random Forrest, CatBoost, LightGBM, XGBoost. For each of these algorithms, cross-validation and hyperparameter search were performed on the training sample. As a result, five predictive models with the best parameters were obtained. The resulting predictive models were applied to the learning sample, after which their performance was compared in order to determine the most effective model. Results . Predictive models implemented on ensemble classifiers (CatBoost, LightGBM, XGBoost) showed better results compared to models based on logistic regression and random forest. The best quality metrics were obtained for CatBoost and LightGBM based models (Precision — 0,667, Recall — 0,333, F1-score — 0,444, ROC AUC — 0,666 for both models). There were following common high-ranking parameters for deciding on the outcome for both models: creatinine and blood glucose levels, left ventricular ejection fraction, age, critical stenosis (>70%) of carotid arteries and main lower limb arteries. Conclusion. Ensemble machine learning methods demonstrate higher predictive power compared to traditional methods such as logistic regression. The prognostic models obtained in the study for preoperative prediction of in-hospital mortality in patients referred for CABG can serve as a basis for developing systems to support medical decision-making in patients with coronary artery disease." @default.
- W4328111504 created "2023-03-22" @default.
- W4328111504 creator A5005310819 @default.
- W4328111504 creator A5008314930 @default.
- W4328111504 creator A5012177619 @default.
- W4328111504 creator A5015357980 @default.
- W4328111504 creator A5040926903 @default.
- W4328111504 creator A5044898068 @default.
- W4328111504 creator A5064218487 @default.
- W4328111504 creator A5066447863 @default.
- W4328111504 date "2023-02-20" @default.
- W4328111504 modified "2023-09-27" @default.
- W4328111504 title "Potential of machine learning methods in operational risk stratification in patients with coronary artery disease scheduled for coronary bypass surgery" @default.
- W4328111504 cites W2025802048 @default.
- W4328111504 cites W2116907810 @default.
- W4328111504 cites W2148143831 @default.
- W4328111504 cites W2490420619 @default.
- W4328111504 cites W2571536841 @default.
- W4328111504 cites W2766296277 @default.
- W4328111504 cites W2769416308 @default.
- W4328111504 cites W2977651455 @default.
- W4328111504 cites W3041324631 @default.
- W4328111504 cites W3085057830 @default.
- W4328111504 cites W3092257312 @default.
- W4328111504 cites W3107714436 @default.
- W4328111504 cites W3153037631 @default.
- W4328111504 doi "https://doi.org/10.15829/1560-4071-2023-5211" @default.
- W4328111504 hasPublicationYear "2023" @default.
- W4328111504 type Work @default.
- W4328111504 citedByCount "0" @default.
- W4328111504 crossrefType "journal-article" @default.
- W4328111504 hasAuthorship W4328111504A5005310819 @default.
- W4328111504 hasAuthorship W4328111504A5008314930 @default.
- W4328111504 hasAuthorship W4328111504A5012177619 @default.
- W4328111504 hasAuthorship W4328111504A5015357980 @default.
- W4328111504 hasAuthorship W4328111504A5040926903 @default.
- W4328111504 hasAuthorship W4328111504A5044898068 @default.
- W4328111504 hasAuthorship W4328111504A5064218487 @default.
- W4328111504 hasAuthorship W4328111504A5066447863 @default.
- W4328111504 hasBestOaLocation W43281115041 @default.
- W4328111504 hasConcept C119857082 @default.
- W4328111504 hasConcept C126322002 @default.
- W4328111504 hasConcept C141071460 @default.
- W4328111504 hasConcept C151956035 @default.
- W4328111504 hasConcept C154945302 @default.
- W4328111504 hasConcept C164705383 @default.
- W4328111504 hasConcept C169258074 @default.
- W4328111504 hasConcept C207386681 @default.
- W4328111504 hasConcept C2776820930 @default.
- W4328111504 hasConcept C2778213512 @default.
- W4328111504 hasConcept C2779433084 @default.
- W4328111504 hasConcept C41008148 @default.
- W4328111504 hasConcept C71924100 @default.
- W4328111504 hasConcept C84525736 @default.
- W4328111504 hasConceptScore W4328111504C119857082 @default.
- W4328111504 hasConceptScore W4328111504C126322002 @default.
- W4328111504 hasConceptScore W4328111504C141071460 @default.
- W4328111504 hasConceptScore W4328111504C151956035 @default.
- W4328111504 hasConceptScore W4328111504C154945302 @default.
- W4328111504 hasConceptScore W4328111504C164705383 @default.
- W4328111504 hasConceptScore W4328111504C169258074 @default.
- W4328111504 hasConceptScore W4328111504C207386681 @default.
- W4328111504 hasConceptScore W4328111504C2776820930 @default.
- W4328111504 hasConceptScore W4328111504C2778213512 @default.
- W4328111504 hasConceptScore W4328111504C2779433084 @default.
- W4328111504 hasConceptScore W4328111504C41008148 @default.
- W4328111504 hasConceptScore W4328111504C71924100 @default.
- W4328111504 hasConceptScore W4328111504C84525736 @default.
- W4328111504 hasIssue "2" @default.
- W4328111504 hasLocation W43281115041 @default.
- W4328111504 hasOpenAccess W4328111504 @default.
- W4328111504 hasPrimaryLocation W43281115041 @default.
- W4328111504 hasRelatedWork W3167700044 @default.
- W4328111504 hasRelatedWork W4212963941 @default.
- W4328111504 hasRelatedWork W4239706975 @default.
- W4328111504 hasRelatedWork W4283313480 @default.
- W4328111504 hasRelatedWork W4308191010 @default.
- W4328111504 hasRelatedWork W4318350883 @default.
- W4328111504 hasRelatedWork W4321636153 @default.
- W4328111504 hasRelatedWork W4366151905 @default.
- W4328111504 hasRelatedWork W4376054933 @default.
- W4328111504 hasRelatedWork W4385695370 @default.
- W4328111504 hasVolume "28" @default.
- W4328111504 isParatext "false" @default.
- W4328111504 isRetracted "false" @default.
- W4328111504 workType "article" @default.