Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328112686> ?p ?o ?g. }
- W4328112686 endingPage "119891" @default.
- W4328112686 startingPage "119891" @default.
- W4328112686 abstract "Stripping is widely applied for the removal of ammonia from fresh waste leachate. However, the development of air stripping technology is restricted by the requirements for large-scale equipment and long operation periods. This paper describes a high-gravity technology that improves ammonia stripping from actual fresh waste leachate and a machine learning approach that predicts the stripping performance under different operational parameters. The high-gravity field is implemented in a co-current-flow rotating packed bed in multi-stage cycle series mode. The eXtreme Gradient Boosting algorithm is applied to the experimental data to predict the liquid volumetric mass transfer coefficient (KLa) and removal efficiency (η) for various rotation speeds, numbers of stripping stages, gas flow rates, and liquid flow rates. Ammonia stripping under a high-gravity field achieves η = 82.73% and KLa = 5.551 × 10-4 s-1 at a pH value of 10 and ambient temperature. The results suggest that the eXtreme Gradient Boosting model provides good accuracy and predictive performance, with R2 values of 0.9923 and 0.9783 for KLa and η, respectively. The machine learning models developed in this study are combined with experimental results to provide more comprehensive information on rotating packed bed operations and more accurate predictions of KLa and η. The information mining behind the model is an important reference for the rational design of high-gravity-field-coupled ammonia stripping projects." @default.
- W4328112686 created "2023-03-22" @default.
- W4328112686 creator A5004231602 @default.
- W4328112686 creator A5034417484 @default.
- W4328112686 creator A5046345903 @default.
- W4328112686 creator A5049853050 @default.
- W4328112686 creator A5057751824 @default.
- W4328112686 creator A5065742799 @default.
- W4328112686 creator A5070467333 @default.
- W4328112686 creator A5072751577 @default.
- W4328112686 creator A5087723389 @default.
- W4328112686 creator A5090278453 @default.
- W4328112686 date "2023-05-01" @default.
- W4328112686 modified "2023-09-27" @default.
- W4328112686 title "Machine-learning-aided application of high-gravity technology to enhance ammonia recovery of fresh waste leachate" @default.
- W4328112686 cites W1155350164 @default.
- W4328112686 cites W1974283773 @default.
- W4328112686 cites W2024332598 @default.
- W4328112686 cites W2037584653 @default.
- W4328112686 cites W2053590082 @default.
- W4328112686 cites W2065898568 @default.
- W4328112686 cites W2067922606 @default.
- W4328112686 cites W2163783144 @default.
- W4328112686 cites W2315725510 @default.
- W4328112686 cites W2317490627 @default.
- W4328112686 cites W2330712039 @default.
- W4328112686 cites W2335066399 @default.
- W4328112686 cites W2338255982 @default.
- W4328112686 cites W2374910279 @default.
- W4328112686 cites W2413804918 @default.
- W4328112686 cites W2460942442 @default.
- W4328112686 cites W2531909176 @default.
- W4328112686 cites W2546838365 @default.
- W4328112686 cites W2665043607 @default.
- W4328112686 cites W2729098382 @default.
- W4328112686 cites W2779503400 @default.
- W4328112686 cites W2786147697 @default.
- W4328112686 cites W2794769158 @default.
- W4328112686 cites W2796499987 @default.
- W4328112686 cites W2799677062 @default.
- W4328112686 cites W2809776310 @default.
- W4328112686 cites W2879266945 @default.
- W4328112686 cites W2915053502 @default.
- W4328112686 cites W2921034223 @default.
- W4328112686 cites W2930319765 @default.
- W4328112686 cites W2936647993 @default.
- W4328112686 cites W2982991182 @default.
- W4328112686 cites W3032979465 @default.
- W4328112686 cites W3042493983 @default.
- W4328112686 cites W3043435488 @default.
- W4328112686 cites W3048463274 @default.
- W4328112686 cites W3121657893 @default.
- W4328112686 cites W3136515458 @default.
- W4328112686 cites W3157366906 @default.
- W4328112686 cites W3183927039 @default.
- W4328112686 cites W3184861292 @default.
- W4328112686 cites W3186570958 @default.
- W4328112686 cites W3189718264 @default.
- W4328112686 cites W3194049285 @default.
- W4328112686 cites W3196495855 @default.
- W4328112686 cites W3200542697 @default.
- W4328112686 cites W3216494996 @default.
- W4328112686 cites W4200027750 @default.
- W4328112686 cites W4200059413 @default.
- W4328112686 cites W4207039052 @default.
- W4328112686 cites W4220821430 @default.
- W4328112686 cites W4280625168 @default.
- W4328112686 cites W4281693431 @default.
- W4328112686 cites W575878481 @default.
- W4328112686 cites W829335887 @default.
- W4328112686 doi "https://doi.org/10.1016/j.watres.2023.119891" @default.
- W4328112686 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36965295" @default.
- W4328112686 hasPublicationYear "2023" @default.
- W4328112686 type Work @default.
- W4328112686 citedByCount "0" @default.
- W4328112686 crossrefType "journal-article" @default.
- W4328112686 hasAuthorship W4328112686A5004231602 @default.
- W4328112686 hasAuthorship W4328112686A5034417484 @default.
- W4328112686 hasAuthorship W4328112686A5046345903 @default.
- W4328112686 hasAuthorship W4328112686A5049853050 @default.
- W4328112686 hasAuthorship W4328112686A5057751824 @default.
- W4328112686 hasAuthorship W4328112686A5065742799 @default.
- W4328112686 hasAuthorship W4328112686A5070467333 @default.
- W4328112686 hasAuthorship W4328112686A5072751577 @default.
- W4328112686 hasAuthorship W4328112686A5087723389 @default.
- W4328112686 hasAuthorship W4328112686A5090278453 @default.
- W4328112686 hasConcept C100544194 @default.
- W4328112686 hasConcept C121332964 @default.
- W4328112686 hasConcept C127413603 @default.
- W4328112686 hasConcept C16925390 @default.
- W4328112686 hasConcept C172120300 @default.
- W4328112686 hasConcept C178790620 @default.
- W4328112686 hasConcept C185592680 @default.
- W4328112686 hasConcept C21880701 @default.
- W4328112686 hasConcept C2776382133 @default.
- W4328112686 hasConcept C2908904536 @default.
- W4328112686 hasConcept C31903555 @default.
- W4328112686 hasConcept C39432304 @default.