Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328112707> ?p ?o ?g. }
- W4328112707 endingPage "105104" @default.
- W4328112707 startingPage "105104" @default.
- W4328112707 abstract "This paper proposes a deep reinforcement learning (DRL)-based model as a valuable tool to improve the performance of the driving system (i.e. thrust force and cutterhead torque) of a shield tunnelling machine. The proposed model integrates deep-Q learning algorithm (DQL) and particle swarm optimization (PSO) based on an extreme learning machine (ELM). Specifically, the DQL–PSO model initialized the biases and weights in the ELM to achieve the optimal convergence rate and avoid instability. The DQL–PSO model evaluates the reward of action at each step and thus guides the particles to perform the appropriate action in real time. The DRL process data included shield operational parameters, geometry, and geological conditions. Field data collected from the Shenzhen railway tunnelling case study were used to validate the superiority and effectiveness of the presented DQL–PSO model. The algorithm was also evaluated using four numerical benchmark problems and compared with a theoretical model. The results revealed that the promising potential of DRL as a decision tool efficiently supports the formulation of target strategy and demonstrated its potential for engineering applications." @default.
- W4328112707 created "2023-03-22" @default.
- W4328112707 creator A5056380462 @default.
- W4328112707 creator A5070191696 @default.
- W4328112707 creator A5084703874 @default.
- W4328112707 date "2023-06-01" @default.
- W4328112707 modified "2023-10-14" @default.
- W4328112707 title "Deep reinforcement learning approach to optimize the driving performance of shield tunnelling machines" @default.
- W4328112707 cites W1978723899 @default.
- W4328112707 cites W2029926752 @default.
- W4328112707 cites W2086282769 @default.
- W4328112707 cites W2108388069 @default.
- W4328112707 cites W2111072639 @default.
- W4328112707 cites W2145339207 @default.
- W4328112707 cites W2155661836 @default.
- W4328112707 cites W2287228090 @default.
- W4328112707 cites W2329769476 @default.
- W4328112707 cites W2373911460 @default.
- W4328112707 cites W2482219825 @default.
- W4328112707 cites W2793047315 @default.
- W4328112707 cites W2794556472 @default.
- W4328112707 cites W2800269390 @default.
- W4328112707 cites W2888611374 @default.
- W4328112707 cites W2897661175 @default.
- W4328112707 cites W2951341079 @default.
- W4328112707 cites W2996991292 @default.
- W4328112707 cites W2998483772 @default.
- W4328112707 cites W3015872947 @default.
- W4328112707 cites W3016223321 @default.
- W4328112707 cites W3081821516 @default.
- W4328112707 cites W3100789280 @default.
- W4328112707 cites W3101546351 @default.
- W4328112707 cites W3109316045 @default.
- W4328112707 cites W3111839646 @default.
- W4328112707 cites W3117524684 @default.
- W4328112707 cites W3132291851 @default.
- W4328112707 cites W3134148588 @default.
- W4328112707 cites W3157278006 @default.
- W4328112707 cites W3168279012 @default.
- W4328112707 cites W3195996253 @default.
- W4328112707 cites W3201184676 @default.
- W4328112707 cites W3203629242 @default.
- W4328112707 cites W3208961144 @default.
- W4328112707 cites W3211032071 @default.
- W4328112707 cites W32403112 @default.
- W4328112707 cites W4206357525 @default.
- W4328112707 cites W4210420941 @default.
- W4328112707 cites W4313529127 @default.
- W4328112707 doi "https://doi.org/10.1016/j.tust.2023.105104" @default.
- W4328112707 hasPublicationYear "2023" @default.
- W4328112707 type Work @default.
- W4328112707 citedByCount "7" @default.
- W4328112707 countsByYear W43281127072023 @default.
- W4328112707 crossrefType "journal-article" @default.
- W4328112707 hasAuthorship W4328112707A5056380462 @default.
- W4328112707 hasAuthorship W4328112707A5070191696 @default.
- W4328112707 hasAuthorship W4328112707A5084703874 @default.
- W4328112707 hasConcept C111919701 @default.
- W4328112707 hasConcept C119857082 @default.
- W4328112707 hasConcept C120398109 @default.
- W4328112707 hasConcept C121332964 @default.
- W4328112707 hasConcept C126255220 @default.
- W4328112707 hasConcept C127413603 @default.
- W4328112707 hasConcept C13280743 @default.
- W4328112707 hasConcept C154945302 @default.
- W4328112707 hasConcept C162324750 @default.
- W4328112707 hasConcept C185798385 @default.
- W4328112707 hasConcept C205649164 @default.
- W4328112707 hasConcept C2777303404 @default.
- W4328112707 hasConcept C2780150128 @default.
- W4328112707 hasConcept C33923547 @default.
- W4328112707 hasConcept C41008148 @default.
- W4328112707 hasConcept C49040817 @default.
- W4328112707 hasConcept C50522688 @default.
- W4328112707 hasConcept C50644808 @default.
- W4328112707 hasConcept C78519656 @default.
- W4328112707 hasConcept C79420006 @default.
- W4328112707 hasConcept C85617194 @default.
- W4328112707 hasConcept C97541855 @default.
- W4328112707 hasConcept C98045186 @default.
- W4328112707 hasConceptScore W4328112707C111919701 @default.
- W4328112707 hasConceptScore W4328112707C119857082 @default.
- W4328112707 hasConceptScore W4328112707C120398109 @default.
- W4328112707 hasConceptScore W4328112707C121332964 @default.
- W4328112707 hasConceptScore W4328112707C126255220 @default.
- W4328112707 hasConceptScore W4328112707C127413603 @default.
- W4328112707 hasConceptScore W4328112707C13280743 @default.
- W4328112707 hasConceptScore W4328112707C154945302 @default.
- W4328112707 hasConceptScore W4328112707C162324750 @default.
- W4328112707 hasConceptScore W4328112707C185798385 @default.
- W4328112707 hasConceptScore W4328112707C205649164 @default.
- W4328112707 hasConceptScore W4328112707C2777303404 @default.
- W4328112707 hasConceptScore W4328112707C2780150128 @default.
- W4328112707 hasConceptScore W4328112707C33923547 @default.
- W4328112707 hasConceptScore W4328112707C41008148 @default.
- W4328112707 hasConceptScore W4328112707C49040817 @default.
- W4328112707 hasConceptScore W4328112707C50522688 @default.
- W4328112707 hasConceptScore W4328112707C50644808 @default.