Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328112733> ?p ?o ?g. }
- W4328112733 endingPage "102571" @default.
- W4328112733 startingPage "102571" @default.
- W4328112733 abstract "Computational protein design facilitates the discovery of novel proteins with prescribed structure and functionality. Exciting designs were recently reported using novel data-driven methodologies that can be roughly divided into two categories: evolutionary-based and physics-inspired approaches. The former infer characteristic sequence features shared by sets of evolutionary-related proteins, such as conserved or coevolving positions, and recombine them to generate candidates with similar structure and function. The latter approaches estimate key biochemical properties, such as structure free energy, conformational entropy, or binding affinities using machine learning surrogates, and optimize them to yield improved designs. Here, we review recent progress along both tracks, discuss their strengths and weaknesses, and highlight opportunities for synergistic approaches." @default.
- W4328112733 created "2023-03-22" @default.
- W4328112733 creator A5002693245 @default.
- W4328112733 creator A5006981663 @default.
- W4328112733 creator A5016002177 @default.
- W4328112733 creator A5064065434 @default.
- W4328112733 creator A5069727508 @default.
- W4328112733 date "2023-06-01" @default.
- W4328112733 modified "2023-10-06" @default.
- W4328112733 title "Machine learning for evolutionary-based and physics-inspired protein design: Current and future synergies" @default.
- W4328112733 cites W1548178570 @default.
- W4328112733 cites W1792645488 @default.
- W4328112733 cites W1861406683 @default.
- W4328112733 cites W1979762151 @default.
- W4328112733 cites W2008545402 @default.
- W4328112733 cites W2062210712 @default.
- W4328112733 cites W2141885858 @default.
- W4328112733 cites W2557595285 @default.
- W4328112733 cites W2593619857 @default.
- W4328112733 cites W2890223884 @default.
- W4328112733 cites W2893054519 @default.
- W4328112733 cites W2920817727 @default.
- W4328112733 cites W2944245644 @default.
- W4328112733 cites W2949342052 @default.
- W4328112733 cites W2949867299 @default.
- W4328112733 cites W2963640180 @default.
- W4328112733 cites W2980789587 @default.
- W4328112733 cites W2992752586 @default.
- W4328112733 cites W2999044305 @default.
- W4328112733 cites W3033417435 @default.
- W4328112733 cites W3044778276 @default.
- W4328112733 cites W3113826677 @default.
- W4328112733 cites W3121957686 @default.
- W4328112733 cites W3132323068 @default.
- W4328112733 cites W3135130381 @default.
- W4328112733 cites W3135156311 @default.
- W4328112733 cites W3135175179 @default.
- W4328112733 cites W3135181189 @default.
- W4328112733 cites W3136918052 @default.
- W4328112733 cites W3144239152 @default.
- W4328112733 cites W3154275519 @default.
- W4328112733 cites W3159318882 @default.
- W4328112733 cites W3160453752 @default.
- W4328112733 cites W3163970098 @default.
- W4328112733 cites W3177828909 @default.
- W4328112733 cites W3197596721 @default.
- W4328112733 cites W3201100749 @default.
- W4328112733 cites W3212854871 @default.
- W4328112733 cites W3214001634 @default.
- W4328112733 cites W3216341763 @default.
- W4328112733 cites W4205773061 @default.
- W4328112733 cites W4210297065 @default.
- W4328112733 cites W4210531204 @default.
- W4328112733 cites W4210861939 @default.
- W4328112733 cites W4210922059 @default.
- W4328112733 cites W4220928512 @default.
- W4328112733 cites W4226027101 @default.
- W4328112733 cites W4286488966 @default.
- W4328112733 cites W4296032638 @default.
- W4328112733 cites W4318071656 @default.
- W4328112733 doi "https://doi.org/10.1016/j.sbi.2023.102571" @default.
- W4328112733 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36947951" @default.
- W4328112733 hasPublicationYear "2023" @default.
- W4328112733 type Work @default.
- W4328112733 citedByCount "3" @default.
- W4328112733 countsByYear W43281127332023 @default.
- W4328112733 crossrefType "journal-article" @default.
- W4328112733 hasAuthorship W4328112733A5002693245 @default.
- W4328112733 hasAuthorship W4328112733A5006981663 @default.
- W4328112733 hasAuthorship W4328112733A5016002177 @default.
- W4328112733 hasAuthorship W4328112733A5064065434 @default.
- W4328112733 hasAuthorship W4328112733A5069727508 @default.
- W4328112733 hasBestOaLocation W43281127331 @default.
- W4328112733 hasConcept C111472728 @default.
- W4328112733 hasConcept C119857082 @default.
- W4328112733 hasConcept C138885662 @default.
- W4328112733 hasConcept C154945302 @default.
- W4328112733 hasConcept C2780283098 @default.
- W4328112733 hasConcept C41008148 @default.
- W4328112733 hasConcept C55493867 @default.
- W4328112733 hasConcept C63882131 @default.
- W4328112733 hasConcept C70721500 @default.
- W4328112733 hasConcept C86803240 @default.
- W4328112733 hasConceptScore W4328112733C111472728 @default.
- W4328112733 hasConceptScore W4328112733C119857082 @default.
- W4328112733 hasConceptScore W4328112733C138885662 @default.
- W4328112733 hasConceptScore W4328112733C154945302 @default.
- W4328112733 hasConceptScore W4328112733C2780283098 @default.
- W4328112733 hasConceptScore W4328112733C41008148 @default.
- W4328112733 hasConceptScore W4328112733C55493867 @default.
- W4328112733 hasConceptScore W4328112733C63882131 @default.
- W4328112733 hasConceptScore W4328112733C70721500 @default.
- W4328112733 hasConceptScore W4328112733C86803240 @default.
- W4328112733 hasLocation W43281127331 @default.
- W4328112733 hasLocation W43281127332 @default.
- W4328112733 hasLocation W43281127333 @default.
- W4328112733 hasLocation W43281127334 @default.
- W4328112733 hasOpenAccess W4328112733 @default.