Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328114260> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4328114260 abstract "It is difficult for laser scanning confocal microscopy to obtain high- or ultra-high-resolution laser confocal images directly, which affects the deep mining and use of the embedded information in laser confocal images and forms a technical bottleneck in the in-depth exploration of the microscopic physiological and biochemical processes of plants. The super-resolution reconstruction model (SRGAN), which is based on a generative adversarial network and super-resolution reconstruction model (SRResNet), which is based on a residual network, was used to obtain single and secondary super-resolution reconstruction images of laser confocal images of the root cells of the hyperaccumulator Solanum nigrum. Using the peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and mean opinion score (MOS), the models were evaluated by the image effects after reconstruction and were applied to the recognition of endocytic vesicles in Solanum nigrum root cells. The results showed that the single reconstruction and the secondary reconstruction of SRGAN and SRResNet improved the resolution of laser confocal images. PSNR, SSIM, and MOS were clearly improved, with a maximum PSNR of 47.690. The maximum increment of PSNR and SSIM of the secondary reconstruction images reached 21.7% and 2.8%, respectively, and the objective evaluation of the image quality was good. However, overall MOS was less than that of the single reconstruction, the perceptual quality was weakened, and the time cost was more than 130 times greater. The reconstruction effect of SRResNet was better than that of SRGAN. When SRGAN and SRResNet were used for the recognition of endocytic vesicles in Solanum nigrum root cells, the clarity of the reconstructed images was obviously improved, the boundary of the endocytic vesicles was clearer, and the number of identified endocytic vesicles increased from 6 to 9 and 10, respectively, and the mean fluorescence intensity was enhanced by 14.4% and 7.8%, respectively. Relevant research and achievements are of great significance for promoting the application of deep learning methods and image super-resolution reconstruction technology in laser confocal image studies." @default.
- W4328114260 created "2023-03-22" @default.
- W4328114260 creator A5015069371 @default.
- W4328114260 creator A5043986101 @default.
- W4328114260 creator A5056213859 @default.
- W4328114260 creator A5056854956 @default.
- W4328114260 creator A5067771410 @default.
- W4328114260 date "2023-03-21" @default.
- W4328114260 modified "2023-09-30" @default.
- W4328114260 title "Super-resolution reconstruction, recognition, and evaluation of laser confocal images of hyperaccumulator Solanum nigrum endocytosis vesicles based on deep learning: Comparative study of SRGAN and SRResNet" @default.
- W4328114260 cites W1885185971 @default.
- W4328114260 cites W1988809254 @default.
- W4328114260 cites W2016482162 @default.
- W4328114260 cites W2027648033 @default.
- W4328114260 cites W2070117743 @default.
- W4328114260 cites W2111202632 @default.
- W4328114260 cites W2133665775 @default.
- W4328114260 cites W2341814215 @default.
- W4328114260 cites W2418898991 @default.
- W4328114260 cites W2607186332 @default.
- W4328114260 cites W2767019768 @default.
- W4328114260 cites W2919115771 @default.
- W4328114260 cites W3008780059 @default.
- W4328114260 cites W3080619738 @default.
- W4328114260 cites W3090598983 @default.
- W4328114260 cites W3156786285 @default.
- W4328114260 cites W3173543327 @default.
- W4328114260 cites W3196959538 @default.
- W4328114260 cites W4210593651 @default.
- W4328114260 cites W4284988388 @default.
- W4328114260 cites W4288040106 @default.
- W4328114260 cites W4319595666 @default.
- W4328114260 cites W4365441634 @default.
- W4328114260 cites W598654174 @default.
- W4328114260 doi "https://doi.org/10.3389/fpls.2023.1146485" @default.
- W4328114260 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37025152" @default.
- W4328114260 hasPublicationYear "2023" @default.
- W4328114260 type Work @default.
- W4328114260 citedByCount "0" @default.
- W4328114260 crossrefType "journal-article" @default.
- W4328114260 hasAuthorship W4328114260A5015069371 @default.
- W4328114260 hasAuthorship W4328114260A5043986101 @default.
- W4328114260 hasAuthorship W4328114260A5056213859 @default.
- W4328114260 hasAuthorship W4328114260A5056854956 @default.
- W4328114260 hasAuthorship W4328114260A5067771410 @default.
- W4328114260 hasBestOaLocation W43281142601 @default.
- W4328114260 hasConcept C120665830 @default.
- W4328114260 hasConcept C121332964 @default.
- W4328114260 hasConcept C136009344 @default.
- W4328114260 hasConcept C141379421 @default.
- W4328114260 hasConcept C153180895 @default.
- W4328114260 hasConcept C154945302 @default.
- W4328114260 hasConcept C186060115 @default.
- W4328114260 hasConcept C31972630 @default.
- W4328114260 hasConcept C41008148 @default.
- W4328114260 hasConcept C520434653 @default.
- W4328114260 hasConcept C86803240 @default.
- W4328114260 hasConceptScore W4328114260C120665830 @default.
- W4328114260 hasConceptScore W4328114260C121332964 @default.
- W4328114260 hasConceptScore W4328114260C136009344 @default.
- W4328114260 hasConceptScore W4328114260C141379421 @default.
- W4328114260 hasConceptScore W4328114260C153180895 @default.
- W4328114260 hasConceptScore W4328114260C154945302 @default.
- W4328114260 hasConceptScore W4328114260C186060115 @default.
- W4328114260 hasConceptScore W4328114260C31972630 @default.
- W4328114260 hasConceptScore W4328114260C41008148 @default.
- W4328114260 hasConceptScore W4328114260C520434653 @default.
- W4328114260 hasConceptScore W4328114260C86803240 @default.
- W4328114260 hasFunder F4320335777 @default.
- W4328114260 hasLocation W43281142601 @default.
- W4328114260 hasLocation W43281142602 @default.
- W4328114260 hasLocation W43281142603 @default.
- W4328114260 hasOpenAccess W4328114260 @default.
- W4328114260 hasPrimaryLocation W43281142601 @default.
- W4328114260 hasRelatedWork W1891287906 @default.
- W4328114260 hasRelatedWork W1969923398 @default.
- W4328114260 hasRelatedWork W2036807459 @default.
- W4328114260 hasRelatedWork W2166024367 @default.
- W4328114260 hasRelatedWork W2229312674 @default.
- W4328114260 hasRelatedWork W2517246325 @default.
- W4328114260 hasRelatedWork W2755342338 @default.
- W4328114260 hasRelatedWork W2772917594 @default.
- W4328114260 hasRelatedWork W2775347418 @default.
- W4328114260 hasRelatedWork W3116076068 @default.
- W4328114260 hasVolume "14" @default.
- W4328114260 isParatext "false" @default.
- W4328114260 isRetracted "false" @default.
- W4328114260 workType "article" @default.