Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328114448> ?p ?o ?g. }
- W4328114448 endingPage "265" @default.
- W4328114448 startingPage "253" @default.
- W4328114448 abstract "Convolutional Neural Network (CNN) is one of the most important architectures in deep learning. The fundamental building block of a CNN is a trainable filter, represented as a discrete grid, used to perform convolution on discrete input data. In this work, we propose a continuous version of a trainable convolutional filter able to work also with unstructured data. This new framework allows exploring CNNs beyond discrete domains, enlarging the usage of this important learning technique for many more complex problems. Our experiments show that the continuous filter can achieve a level of accuracy comparable to the state-of-the-art discrete filter, and that it can be used in current deep learning architectures as a building block to solve problems with unstructured domains as well." @default.
- W4328114448 created "2023-03-22" @default.
- W4328114448 creator A5043599485 @default.
- W4328114448 creator A5061558433 @default.
- W4328114448 creator A5077743159 @default.
- W4328114448 creator A5081391708 @default.
- W4328114448 creator A5090253824 @default.
- W4328114448 date "2023-03-21" @default.
- W4328114448 modified "2023-10-14" @default.
- W4328114448 title "A continuous convolutional trainable filter for modelling unstructured data" @default.
- W4328114448 cites W2023561502 @default.
- W4328114448 cites W2103496339 @default.
- W4328114448 cites W2116386142 @default.
- W4328114448 cites W2137983211 @default.
- W4328114448 cites W2622826443 @default.
- W4328114448 cites W2734358244 @default.
- W4328114448 cites W2884001105 @default.
- W4328114448 cites W2899663614 @default.
- W4328114448 cites W2903415461 @default.
- W4328114448 cites W2948551291 @default.
- W4328114448 cites W2949650786 @default.
- W4328114448 cites W2950120736 @default.
- W4328114448 cites W2964121744 @default.
- W4328114448 cites W2974922583 @default.
- W4328114448 cites W2990024126 @default.
- W4328114448 cites W2999507627 @default.
- W4328114448 cites W3004077366 @default.
- W4328114448 cites W3006335338 @default.
- W4328114448 cites W3122159272 @default.
- W4328114448 cites W3125537303 @default.
- W4328114448 cites W3140854437 @default.
- W4328114448 cites W3159754263 @default.
- W4328114448 cites W3168997536 @default.
- W4328114448 cites W3194202055 @default.
- W4328114448 cites W4210257598 @default.
- W4328114448 cites W4221156222 @default.
- W4328114448 cites W4232619139 @default.
- W4328114448 cites W4245654886 @default.
- W4328114448 cites W4250343270 @default.
- W4328114448 cites W4284710558 @default.
- W4328114448 cites W4300435436 @default.
- W4328114448 doi "https://doi.org/10.1007/s00466-023-02291-1" @default.
- W4328114448 hasPublicationYear "2023" @default.
- W4328114448 type Work @default.
- W4328114448 citedByCount "0" @default.
- W4328114448 crossrefType "journal-article" @default.
- W4328114448 hasAuthorship W4328114448A5043599485 @default.
- W4328114448 hasAuthorship W4328114448A5061558433 @default.
- W4328114448 hasAuthorship W4328114448A5077743159 @default.
- W4328114448 hasAuthorship W4328114448A5081391708 @default.
- W4328114448 hasAuthorship W4328114448A5090253824 @default.
- W4328114448 hasBestOaLocation W43281144481 @default.
- W4328114448 hasConcept C106131492 @default.
- W4328114448 hasConcept C108583219 @default.
- W4328114448 hasConcept C11413529 @default.
- W4328114448 hasConcept C119857082 @default.
- W4328114448 hasConcept C153180895 @default.
- W4328114448 hasConcept C154945302 @default.
- W4328114448 hasConcept C2524010 @default.
- W4328114448 hasConcept C2777210771 @default.
- W4328114448 hasConcept C31972630 @default.
- W4328114448 hasConcept C33923547 @default.
- W4328114448 hasConcept C41008148 @default.
- W4328114448 hasConcept C45347329 @default.
- W4328114448 hasConcept C50644808 @default.
- W4328114448 hasConcept C81363708 @default.
- W4328114448 hasConceptScore W4328114448C106131492 @default.
- W4328114448 hasConceptScore W4328114448C108583219 @default.
- W4328114448 hasConceptScore W4328114448C11413529 @default.
- W4328114448 hasConceptScore W4328114448C119857082 @default.
- W4328114448 hasConceptScore W4328114448C153180895 @default.
- W4328114448 hasConceptScore W4328114448C154945302 @default.
- W4328114448 hasConceptScore W4328114448C2524010 @default.
- W4328114448 hasConceptScore W4328114448C2777210771 @default.
- W4328114448 hasConceptScore W4328114448C31972630 @default.
- W4328114448 hasConceptScore W4328114448C33923547 @default.
- W4328114448 hasConceptScore W4328114448C41008148 @default.
- W4328114448 hasConceptScore W4328114448C45347329 @default.
- W4328114448 hasConceptScore W4328114448C50644808 @default.
- W4328114448 hasConceptScore W4328114448C81363708 @default.
- W4328114448 hasFunder F4320338335 @default.
- W4328114448 hasIssue "2" @default.
- W4328114448 hasLocation W43281144481 @default.
- W4328114448 hasLocation W43281144482 @default.
- W4328114448 hasLocation W43281144483 @default.
- W4328114448 hasOpenAccess W4328114448 @default.
- W4328114448 hasPrimaryLocation W43281144481 @default.
- W4328114448 hasRelatedWork W2731899572 @default.
- W4328114448 hasRelatedWork W2999805992 @default.
- W4328114448 hasRelatedWork W3116150086 @default.
- W4328114448 hasRelatedWork W3133861977 @default.
- W4328114448 hasRelatedWork W4200173597 @default.
- W4328114448 hasRelatedWork W4223943233 @default.
- W4328114448 hasRelatedWork W4291897433 @default.
- W4328114448 hasRelatedWork W4312417841 @default.
- W4328114448 hasRelatedWork W4321369474 @default.
- W4328114448 hasRelatedWork W4380075502 @default.
- W4328114448 hasVolume "72" @default.