Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328116258> ?p ?o ?g. }
- W4328116258 endingPage "676" @default.
- W4328116258 startingPage "660" @default.
- W4328116258 abstract "Medical image fusion plays a pivotal role in facilitating clinical diagnosis. However, the quality of input medical images may be marred by noise, low contrast, and lack of sharpness, presenting numerous challenges for medical image synthesis algorithms. Additionally, several fusion rules may degrade the brightness and contrast of the fused image. To this end, this paper presents a novel image synthesis approach to tackle the aforementioned issues. First, the input images undergo pre-processing to enhance their quality. Subsequently, we introduce the three-layer image decomposition (TLID) technique, which decomposes an image into three distinct layers: the base layer (LB), the small-scale structure layer (LSS), and the large-scale structure layer (LLS). Next, we synthesize the base layers utilizing adaptive rules based on the Marine predators algorithm (MPA), ensuring that the output image is not degraded. Finally, we propose an efficient synthesis method for LSS and LLS layers, based on combining the local energy function with its variations. This fusion technique preserves the intricate details present in the original image. We evaluated our approach on 156 medical images using six evaluation metrics and compared it with seven state-of-the-art image synthesis techniques. Our results demonstrate that our method successfully generates high-quality output images and preserves detailed information throughout the image synthesis process." @default.
- W4328116258 created "2023-03-22" @default.
- W4328116258 creator A5076598105 @default.
- W4328116258 date "2023-03-20" @default.
- W4328116258 modified "2023-09-28" @default.
- W4328116258 title "A novel approach using the local energy function and its variations for medical image fusion" @default.
- W4328116258 cites W2002285735 @default.
- W4328116258 cites W2010994434 @default.
- W4328116258 cites W2031183907 @default.
- W4328116258 cites W2072955302 @default.
- W4328116258 cites W2077061503 @default.
- W4328116258 cites W2081195086 @default.
- W4328116258 cites W2091484864 @default.
- W4328116258 cites W2116702374 @default.
- W4328116258 cites W2116899452 @default.
- W4328116258 cites W2231495490 @default.
- W4328116258 cites W2232317135 @default.
- W4328116258 cites W2290883490 @default.
- W4328116258 cites W2532801510 @default.
- W4328116258 cites W2738900493 @default.
- W4328116258 cites W2808591023 @default.
- W4328116258 cites W2898653582 @default.
- W4328116258 cites W2901693161 @default.
- W4328116258 cites W2912551047 @default.
- W4328116258 cites W2912581987 @default.
- W4328116258 cites W2945073190 @default.
- W4328116258 cites W2950841483 @default.
- W4328116258 cites W2960060338 @default.
- W4328116258 cites W2968930297 @default.
- W4328116258 cites W2969800413 @default.
- W4328116258 cites W2983696264 @default.
- W4328116258 cites W2983888060 @default.
- W4328116258 cites W2996165363 @default.
- W4328116258 cites W2999333317 @default.
- W4328116258 cites W3007397120 @default.
- W4328116258 cites W3007920826 @default.
- W4328116258 cites W3011104345 @default.
- W4328116258 cites W3012761544 @default.
- W4328116258 cites W3016730347 @default.
- W4328116258 cites W3027257493 @default.
- W4328116258 cites W3033635470 @default.
- W4328116258 cites W3041367149 @default.
- W4328116258 cites W3083968433 @default.
- W4328116258 cites W3088569169 @default.
- W4328116258 cites W3092277933 @default.
- W4328116258 cites W3092440075 @default.
- W4328116258 cites W3096242307 @default.
- W4328116258 cites W3097641051 @default.
- W4328116258 cites W3120281622 @default.
- W4328116258 cites W3121121992 @default.
- W4328116258 cites W3127404635 @default.
- W4328116258 cites W3130913316 @default.
- W4328116258 cites W3131207985 @default.
- W4328116258 cites W3132955197 @default.
- W4328116258 cites W3147357738 @default.
- W4328116258 cites W3152010176 @default.
- W4328116258 cites W3156739093 @default.
- W4328116258 cites W3158729725 @default.
- W4328116258 cites W3159287698 @default.
- W4328116258 cites W3160499520 @default.
- W4328116258 cites W3162119082 @default.
- W4328116258 cites W3166573892 @default.
- W4328116258 cites W3184607964 @default.
- W4328116258 cites W3193238958 @default.
- W4328116258 cites W3198499021 @default.
- W4328116258 cites W3205542311 @default.
- W4328116258 cites W3210622547 @default.
- W4328116258 cites W3212907520 @default.
- W4328116258 cites W3215504204 @default.
- W4328116258 cites W4205970187 @default.
- W4328116258 cites W4206672883 @default.
- W4328116258 cites W4213080281 @default.
- W4328116258 cites W4224283557 @default.
- W4328116258 cites W4225262035 @default.
- W4328116258 cites W4252684946 @default.
- W4328116258 cites W4281612381 @default.
- W4328116258 cites W4282980911 @default.
- W4328116258 cites W4283360701 @default.
- W4328116258 cites W4294343971 @default.
- W4328116258 cites W4295350485 @default.
- W4328116258 cites W4304015045 @default.
- W4328116258 cites W4308746155 @default.
- W4328116258 cites W4313066135 @default.
- W4328116258 cites W4319030342 @default.
- W4328116258 cites W4321768015 @default.
- W4328116258 doi "https://doi.org/10.1080/13682199.2023.2190947" @default.
- W4328116258 hasPublicationYear "2023" @default.
- W4328116258 type Work @default.
- W4328116258 citedByCount "3" @default.
- W4328116258 countsByYear W43281162582023 @default.
- W4328116258 crossrefType "journal-article" @default.
- W4328116258 hasAuthorship W4328116258A5076598105 @default.
- W4328116258 hasConcept C105795698 @default.
- W4328116258 hasConcept C111919701 @default.
- W4328116258 hasConcept C115961682 @default.
- W4328116258 hasConcept C120665830 @default.
- W4328116258 hasConcept C121332964 @default.
- W4328116258 hasConcept C125245961 @default.