Matches in SemOpenAlex for { <https://semopenalex.org/work/W4328117633> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4328117633 abstract "Abstract Lung cancer is an abnormal development of cells that are uncontrollably proliferating. When using a system for medical diagnostics, the precise identification of lung cancer is crucial. Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are the most common methods for diagnoses. Due to the limited sensitivity of the border pixels in PET and MRI imaging, finding lung cancer might be difficult. As a result, image fusion was created, which successfully combines several modalities to identify the disease and cure it. But merging images from multiple modalities has always been troublesome in medicine because the final image includes distorted spectral information. The ideal pixel-level image fusion approach to merge lung cancer images obtained from several modalities is provided in this research to circumvent the issue. Pre-processing, multi-modality image fusion, feature extraction, and classification are the four phases of the suggested methodology. Images from the PET and MRI scanners are initially gathered and prepared. The best pixel-level fusion method is then used to merge the PET and MRI images. Here, the adaptive tee seed optimization (ATSO) method is used to ideally choose the fusion parameter contained in the approach to improve the fusion model. The texture characteristics are taken from the fused image after the image fusion procedure. The deep extreme learning machine (DELM) classifier will then identify animage as normal or abnormal using the retrieved characteristics.Utilizing a variety of criteria, the effectiveness of the suggested methodology is assessed and compared to previous state-of-art studies." @default.
- W4328117633 created "2023-03-22" @default.
- W4328117633 creator A5006087662 @default.
- W4328117633 creator A5013251360 @default.
- W4328117633 date "2023-03-21" @default.
- W4328117633 modified "2023-09-27" @default.
- W4328117633 title "Optimized Pixel Level Image Fusion for Lung Cancer Detection Over Mri and Pet Image" @default.
- W4328117633 cites W1574066498 @default.
- W4328117633 cites W2026651590 @default.
- W4328117633 cites W2170163526 @default.
- W4328117633 cites W237869302 @default.
- W4328117633 cites W2474462684 @default.
- W4328117633 cites W2753041165 @default.
- W4328117633 cites W2956789413 @default.
- W4328117633 cites W2997947674 @default.
- W4328117633 cites W3102648527 @default.
- W4328117633 cites W3111767391 @default.
- W4328117633 cites W3122103149 @default.
- W4328117633 cites W3168846113 @default.
- W4328117633 cites W3173182138 @default.
- W4328117633 doi "https://doi.org/10.21203/rs.3.rs-2624400/v1" @default.
- W4328117633 hasPublicationYear "2023" @default.
- W4328117633 type Work @default.
- W4328117633 citedByCount "0" @default.
- W4328117633 crossrefType "posted-content" @default.
- W4328117633 hasAuthorship W4328117633A5006087662 @default.
- W4328117633 hasAuthorship W4328117633A5013251360 @default.
- W4328117633 hasBestOaLocation W43281176331 @default.
- W4328117633 hasConcept C115961682 @default.
- W4328117633 hasConcept C126838900 @default.
- W4328117633 hasConcept C142724271 @default.
- W4328117633 hasConcept C143409427 @default.
- W4328117633 hasConcept C153180895 @default.
- W4328117633 hasConcept C154945302 @default.
- W4328117633 hasConcept C160633673 @default.
- W4328117633 hasConcept C2775842073 @default.
- W4328117633 hasConcept C2776256026 @default.
- W4328117633 hasConcept C31601959 @default.
- W4328117633 hasConcept C31972630 @default.
- W4328117633 hasConcept C41008148 @default.
- W4328117633 hasConcept C69744172 @default.
- W4328117633 hasConcept C71924100 @default.
- W4328117633 hasConceptScore W4328117633C115961682 @default.
- W4328117633 hasConceptScore W4328117633C126838900 @default.
- W4328117633 hasConceptScore W4328117633C142724271 @default.
- W4328117633 hasConceptScore W4328117633C143409427 @default.
- W4328117633 hasConceptScore W4328117633C153180895 @default.
- W4328117633 hasConceptScore W4328117633C154945302 @default.
- W4328117633 hasConceptScore W4328117633C160633673 @default.
- W4328117633 hasConceptScore W4328117633C2775842073 @default.
- W4328117633 hasConceptScore W4328117633C2776256026 @default.
- W4328117633 hasConceptScore W4328117633C31601959 @default.
- W4328117633 hasConceptScore W4328117633C31972630 @default.
- W4328117633 hasConceptScore W4328117633C41008148 @default.
- W4328117633 hasConceptScore W4328117633C69744172 @default.
- W4328117633 hasConceptScore W4328117633C71924100 @default.
- W4328117633 hasLocation W43281176331 @default.
- W4328117633 hasOpenAccess W4328117633 @default.
- W4328117633 hasPrimaryLocation W43281176331 @default.
- W4328117633 hasRelatedWork W121273120 @default.
- W4328117633 hasRelatedWork W2002009170 @default.
- W4328117633 hasRelatedWork W2090093270 @default.
- W4328117633 hasRelatedWork W2337415362 @default.
- W4328117633 hasRelatedWork W2547748020 @default.
- W4328117633 hasRelatedWork W2581756885 @default.
- W4328117633 hasRelatedWork W2740820121 @default.
- W4328117633 hasRelatedWork W2909619314 @default.
- W4328117633 hasRelatedWork W317572212 @default.
- W4328117633 hasRelatedWork W4312857205 @default.
- W4328117633 isParatext "false" @default.
- W4328117633 isRetracted "false" @default.
- W4328117633 workType "article" @default.